These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 9632678)
1. Biochemical studies of the mechanism of action of the Cdc42-GTPase-activating protein. Leonard DA; Lin R; Cerione RA; Manor D J Biol Chem; 1998 Jun; 273(26):16210-5. PubMed ID: 9632678 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the interactions between the small GTPase Cdc42 and its GTPase-activating proteins and putative effectors. Comparison of kinetic properties of Cdc42 binding to the Cdc42-interactive domains. Zhang B; Wang ZX; Zheng Y J Biol Chem; 1997 Aug; 272(35):21999-2007. PubMed ID: 9268338 [TBL] [Abstract][Full Text] [Related]
3. Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP. Nassar N; Hoffman GR; Manor D; Clardy JC; Cerione RA Nat Struct Biol; 1998 Dec; 5(12):1047-52. PubMed ID: 9846874 [TBL] [Abstract][Full Text] [Related]
4. Understanding the catalytic mechanism of GTPase-activating proteins: demonstration of the importance of switch domain stabilization in the stimulation of GTP hydrolysis. Fidyk NJ; Cerione RA Biochemistry; 2002 Dec; 41(52):15644-53. PubMed ID: 12501193 [TBL] [Abstract][Full Text] [Related]
6. A built-in arginine finger triggers the self-stimulatory GTPase-activating activity of rho family GTPases. Zhang B; Zhang Y; Collins CC; Johnson DI; Zheng Y J Biol Chem; 1999 Jan; 274(5):2609-12. PubMed ID: 9915787 [TBL] [Abstract][Full Text] [Related]
7. Biochemical comparisons of the Saccharomyces cerevisiae Bem2 and Bem3 proteins. Delineation of a limit Cdc42 GTPase-activating protein domain. Zheng Y; Hart MJ; Shinjo K; Evans T; Bender A; Cerione RA J Biol Chem; 1993 Nov; 268(33):24629-34. PubMed ID: 8227021 [TBL] [Abstract][Full Text] [Related]
8. Structural determinants required for the interaction between Rho GTPase and the GTPase-activating domain of p190. Li R; Zhang B; Zheng Y J Biol Chem; 1997 Dec; 272(52):32830-5. PubMed ID: 9407060 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the GTP-binding/GTPase cycle of Cdc42Hs using extrinsic reporter group fluorescence. Nomanbhoy TK; Leonard DA; Manor D; Cerione RA Biochemistry; 1996 Apr; 35(14):4602-8. PubMed ID: 8605211 [TBL] [Abstract][Full Text] [Related]
10. Fluoride activation of the Rho family GTP-binding protein Cdc42Hs. Hoffman GR; Nassar N; Oswald RE; Cerione RA J Biol Chem; 1998 Feb; 273(8):4392-9. PubMed ID: 9468490 [TBL] [Abstract][Full Text] [Related]
11. Cloning and expression of a human CDC42 GTPase-activating protein reveals a functional SH3-binding domain. Barfod ET; Zheng Y; Kuang WJ; Hart MJ; Evans T; Cerione RA; Ashkenazi A J Biol Chem; 1993 Dec; 268(35):26059-62. PubMed ID: 8253717 [TBL] [Abstract][Full Text] [Related]
12. Characterisation of the interaction of normal and mutant Rho-GAP with Rho family proteins. Graham DL; Eccleston JF; Lowe PN Biochem Soc Trans; 1997 Aug; 25(3):512S. PubMed ID: 9388731 [No Abstract] [Full Text] [Related]
13. Characterization of Rad, a new member of Ras/GTPase superfamily, and its regulation by a unique GTPase-activating protein (GAP)-like activity. Zhu J; Reynet C; Caldwell JS; Kahn CR J Biol Chem; 1995 Mar; 270(9):4805-12. PubMed ID: 7876254 [TBL] [Abstract][Full Text] [Related]
14. Control of the yeast bud-site assembly GTPase Cdc42. Catalysis of guanine nucleotide exchange by Cdc24 and stimulation of GTPase activity by Bem3. Zheng Y; Cerione R; Bender A J Biol Chem; 1994 Jan; 269(4):2369-72. PubMed ID: 8300560 [TBL] [Abstract][Full Text] [Related]
15. The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases. Brill S; Li S; Lyman CW; Church DM; Wasmuth JJ; Weissbach L; Bernards A; Snijders AJ Mol Cell Biol; 1996 Sep; 16(9):4869-78. PubMed ID: 8756646 [TBL] [Abstract][Full Text] [Related]
16. GTP hydrolysis mechanisms in ras p21 and in the ras-GAP complex studied by fluorescence measurements on tryptophan mutants. Antonny B; Chardin P; Roux M; Chabre M Biochemistry; 1991 Aug; 30(34):8287-95. PubMed ID: 1883817 [TBL] [Abstract][Full Text] [Related]
17. Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Goldberg J Cell; 1999 Mar; 96(6):893-902. PubMed ID: 10102276 [TBL] [Abstract][Full Text] [Related]
18. Identification of a putative effector for Cdc42Hs with high sequence similarity to the RasGAP-related protein IQGAP1 and a Cdc42Hs binding partner with similarity to IQGAP2. McCallum SJ; Wu WJ; Cerione RA J Biol Chem; 1996 Sep; 271(36):21732-7. PubMed ID: 8702968 [TBL] [Abstract][Full Text] [Related]
19. Interaction of Rac1 with GTPase-activating proteins and putative effectors. A comparison with Cdc42 and RhoA. Zhang B; Chernoff J; Zheng Y J Biol Chem; 1998 Apr; 273(15):8776-82. PubMed ID: 9535855 [TBL] [Abstract][Full Text] [Related]
20. An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase. Hildebrand JD; Taylor JM; Parsons JT Mol Cell Biol; 1996 Jun; 16(6):3169-78. PubMed ID: 8649427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]