BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 9632749)

  • 1. Role of histone H1 as an architectural determinant of chromatin structure and as a specific repressor of transcription on Xenopus oocyte 5S rRNA genes.
    Sera T; Wolffe AP
    Mol Cell Biol; 1998 Jul; 18(7):3668-80. PubMed ID: 9632749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1.
    Bouvet P; Dimitrov S; Wolffe AP
    Genes Dev; 1994 May; 8(10):1147-59. PubMed ID: 7926720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential nucleosome positioning on Xenopus oocyte and somatic 5 S RNA genes determines both TFIIIA and H1 binding: a mechanism for selective H1 repression.
    Panetta G; Buttinelli M; Flaus A; Richmond TJ; Rhodes D
    J Mol Biol; 1998 Sep; 282(3):683-97. PubMed ID: 9737930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosomal organization of Xenopus laevis oocyte and somatic 5S rRNA genes in vivo.
    Chipev CC; Wolffe AP
    Mol Cell Biol; 1992 Jan; 12(1):45-55. PubMed ID: 1729615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The AT-rich flanks of the oocyte-type 5S RNA gene of Xenopus laevis act as a strong local signal for histone H1-mediated chromatin reorganization in vitro.
    Tomaszewski R; Jerzmanowski A
    Nucleic Acids Res; 1997 Feb; 25(3):458-66. PubMed ID: 9016582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Both the 5S rRNA gene and the AT-rich flanks of xenopus laevis oocyte-type 5S rDNA repeat are required for histone H1-dependent repression of transcription of pol III-type genes in in vitro reconstituted chromatin.
    Tomaszewski R; Mogielnicka E; Jerzmanowski A
    Nucleic Acids Res; 1998 Dec; 26(24):5596-601. PubMed ID: 9837988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone H1 binding does not inhibit transcription of nucleosomal Xenopus laevis somatic 5S rRNA templates.
    Howe L; Itoh T; Katagiri C; AusiĆ³ J
    Biochemistry; 1998 May; 37(20):7077-82. PubMed ID: 9585517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone H1 represses transcription from minichromosomes assembled in vitro.
    Shimamura A; Sapp M; Rodriguez-Campos A; Worcel A
    Mol Cell Biol; 1989 Dec; 9(12):5573-84. PubMed ID: 2586527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dominant and specific repression of Xenopus oocyte 5S RNA genes and satellite I DNA by histone H1.
    Wolffe AP
    EMBO J; 1989 Feb; 8(2):527-37. PubMed ID: 2721490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The H1A histone variant is an in vivo repressor of oocyte-type 5S gene transcription in Xenopus laevis embryos.
    Kandolf H
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7257-61. PubMed ID: 8041776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleosome translational position, not histone acetylation, determines TFIIIA binding to nucleosomal Xenopus laevis 5S rRNA genes.
    Howe L; AusiĆ³ J
    Mol Cell Biol; 1998 Mar; 18(3):1156-62. PubMed ID: 9488430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transcriptional regulation of Xenopus 5s RNA genes in chromatin: the roles of active stable transcription complexes and histone H1.
    Schlissel MS; Brown DD
    Cell; 1984 Jul; 37(3):903-13. PubMed ID: 6540147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The histone binding protein nucleoplasmin does not facilitate binding of transcription factor IIIA to nucleosomal Xenopus laevis 5S rRNA genes.
    Howe L; Itoh T; Katagiri C; Ausio J
    Biochemistry; 1998 Feb; 37(5):1174-7. PubMed ID: 9477940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone-DNA contacts in a nucleosome core containing a Xenopus 5S rRNA gene.
    Pruss D; Wolffe AP
    Biochemistry; 1993 Jul; 32(27):6810-4. PubMed ID: 8334114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of histone H1 in chromatin condensation and transcriptional repression.
    Buttinelli M; Panetta G; Rhodes D; Travers A
    Genetica; 1999; 106(1-2):117-24. PubMed ID: 10710717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remodeling somatic nuclei in Xenopus laevis egg extracts: molecular mechanisms for the selective release of histones H1 and H1(0) from chromatin and the acquisition of transcriptional competence.
    Dimitrov S; Wolffe AP
    EMBO J; 1996 Nov; 15(21):5897-906. PubMed ID: 8918467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosomal footprinting of transcriptionally active and inactive oocyte-type 5S RNA genes of Xenopus laevis.
    Engelke DR; Gottesfeld JM
    Nucleic Acids Res; 1990 Oct; 18(20):6031-7. PubMed ID: 2235485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restricted specificity of Xenopus TFIIIA for transcription of somatic 5S rRNA genes.
    Ghose R; Malik M; Huber PW
    Mol Cell Biol; 2004 Mar; 24(6):2467-77. PubMed ID: 14993284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential binding of oocyte-type and somatic-type 5S rRNA to TFIIIA and ribosomal protein L5 in Xenopus oocytes: specialization for storage versus mobilization.
    Allison LA; North MT; Neville LA
    Dev Biol; 1995 Apr; 168(2):284-95. PubMed ID: 7729570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the repressed 5S DNA minichromosomes assembled in vitro with a high-speed supernatant of Xenopus laevis oocytes.
    Shimamura A; Tremethick D; Worcel A
    Mol Cell Biol; 1988 Oct; 8(10):4257-69. PubMed ID: 3185548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.