BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 9633591)

  • 1. Unfolding/folding studies on cobrotoxin from Taiwan cobra venom: pH and GSH/GSSG govern disulfide isomerization at the C-terminus.
    Chang LS; Lin SR; Chang CC
    Arch Biochem Biophys; 1998 Jun; 354(1):1-8. PubMed ID: 9633591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refolding of Taiwan cobra neurotoxin: intramolecular cross-link affects its refolding reaction.
    Chang LS; Lin SR; Yang CC
    Arch Biochem Biophys; 2001 Mar; 387(2):289-96. PubMed ID: 11370853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and mutagenesis studies of cobrotoxin from Taiwan cobra.
    Chang LS; Chen KC; Wu BN; Lin SK; Wu PF; Hong YR; Yang CC
    Biochem Biophys Res Commun; 1999 Oct; 263(3):652-6. PubMed ID: 10512733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disulfide isomerization and thiol-disulfide exchange of long neurotoxins from the venom of Ophiophagus hannah.
    Chang LS; Lin SR; Huang HB
    Arch Biochem Biophys; 2006 Oct; 454(2):181-8. PubMed ID: 16962984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disulfide isomerization within the C-terminus of cobrotoxin decelerates by thiol compounds and trinitrophenylation, but accelerates by modification of carboxyl groups.
    Chang L; Lin S; Chang C; Yang C
    Arch Biochem Biophys; 1998 Oct; 358(1):164-70. PubMed ID: 9750177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutaraldehyde cross-linking alters the environment around Trp(29) of cobrotoxin and the pathway for regaining its fine structure during refolding.
    Chang LS; Lin SR; Yang CC
    J Pept Res; 2001 Aug; 58(2):173-9. PubMed ID: 11532076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutathione-dependent pathways of refolding of RNase T1 by oxidation and disulfide isomerization: catalysis by protein disulfide isomerase.
    Ruoppolo M; Freedman RB; Pucci P; Marino G
    Biochemistry; 1996 Oct; 35(42):13636-46. PubMed ID: 8885843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Status of tryptophan residue in cobrotoxin and alpha-bungarotoxin.
    Chang LS; Kuo KW; Chang CC
    Biochem Mol Biol Int; 1993 Mar; 29(3):435-42. PubMed ID: 8485461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cobrotoxin: structure and function.
    Yang CC
    J Nat Toxins; 1999 Jun; 8(2):221-33. PubMed ID: 10410333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully oxidized scrambled isomers are essential and predominant folding intermediates of cardiotoxin-III.
    Chang JY; Lu BY; Lin CC; Yu C
    FEBS Lett; 2006 Jan; 580(2):656-60. PubMed ID: 16412427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic studies of the oxidation of glutathione in protein refolding buffer.
    Wang SS; Hung YT; Lin YC
    Bioprocess Biosyst Eng; 2010 Feb; 33(2):277-86. PubMed ID: 19404681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Balancing conformational and oxidative kinetic traps during the folding of bovine pancreatic trypsin inhibitor (BPTI) with glutathione and glutathione disulfide.
    Kibria FM; Lees WJ
    J Am Chem Soc; 2008 Jan; 130(3):796-7. PubMed ID: 18166059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structurally homologous toxins isolated from the Taiwan cobra (Naja naja atra) differ significantly in their structural stability.
    Sivaraman T; Kumar TK; Tu YT; Peng HJ; Yu C
    Arch Biochem Biophys; 1999 Mar; 363(1):107-15. PubMed ID: 10049504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro disulfide-coupled folding of guanylyl cyclase-activating peptide and its precursor protein.
    Hidaka Y; Ohno M; Hemmasi B; Hill O; Forssmann WG; Shimonishi Y
    Biochemistry; 1998 Jun; 37(23):8498-507. PubMed ID: 9622502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational exchange is critical for the productivity of an oxidative folding intermediate with buried free cysteines.
    Gross G; Gallopin M; Vandame M; Couprie J; Stura E; Zinn-Justin S; Drevet P
    J Mol Biol; 2010 Oct; 403(2):299-312. PubMed ID: 20804768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disulfide bond cleavage induced by a platinum(II) methionine complex.
    Wei H; Wang X; Liu Q; Mei Y; Lu Y; Guo Z
    Inorg Chem; 2005 Aug; 44(17):6077-81. PubMed ID: 16097828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unfolding and refolding of cardiotoxin III elucidated by reversible conversion of the native and scrambled species.
    Chang JY; Kumar TK; Yu C
    Biochemistry; 1998 May; 37(19):6745-51. PubMed ID: 9578558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consequence of the removal of evolutionary conserved disulfide bridges on the structure and function of charybdotoxin and evidence that particular cysteine spacings govern specific disulfide bond formation.
    Drakopoulou E; Vizzavona J; Neyton J; Aniort V; Bouet F; Virelizier H; Ménez A; Vita C
    Biochemistry; 1998 Feb; 37(5):1292-301. PubMed ID: 9477955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways.
    Patra AK; Udgaonkar JB
    Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning, direct expression, and purification of a snake venom cardiotoxin in Escherichia coli.
    Kumar TK; Yang PW; Lin SH; Wu CY; Lei B; Lo SJ; Tu SC; Yu C
    Biochem Biophys Res Commun; 1996 Feb; 219(2):450-6. PubMed ID: 8605008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.