These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 9633614)

  • 21. Genetic evidence for the role of isopentenyl diphosphate isomerases in the mevalonate pathway and plant development in Arabidopsis.
    Okada K; Kasahara H; Yamaguchi S; Kawaide H; Kamiya Y; Nojiri H; Yamane H
    Plant Cell Physiol; 2008 Apr; 49(4):604-16. PubMed ID: 18303110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate.
    Rohmer M; Knani M; Simonin P; Sutter B; Sahm H
    Biochem J; 1993 Oct; 295 ( Pt 2)(Pt 2):517-24. PubMed ID: 8240251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosynthesis of the diterpene verrucosan-2beta-ol in the phototrophic eubacterium Chloroflexus aurantiacus. A retrobiosynthetic NMR study.
    Rieder C; Strauss G; Fuchs G; Arigoni D; Bacher A; Eisenreich W
    J Biol Chem; 1998 Jul; 273(29):18099-108. PubMed ID: 9660767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Incorporation of 1-deoxy-D-xylulose into isoprene and phytol by higher plants and algae.
    Schwender J; Zeidler J; Gröner R; Müller C; Focke M; Braun S; Lichtenthaler FW; Lichtenthaler HK
    FEBS Lett; 1997 Sep; 414(1):129-34. PubMed ID: 9305746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Incorporation of [14C] carbon dioxide and [2-14C] mevalonic acid into terpenoids of higher plants during chloroplast development.
    Treharne KJ; Mercer EI; Goodwin TW
    Biochem J; 1966 Apr; 99(1):239-45. PubMed ID: 5965341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Interrelation between the pathways of isoprenoid biosynthesis and carbon source catabolism in anaerobic and facultatively anaerobic bacteria].
    Trutko SM; Shcherbakova VA; Ivanova IV; Lysanskaia VIa; Arkhipova OV; Chuvil'skaia NA; Baskunov BP; Ostrovskiĭ DN; Akimenko VK
    Mikrobiologiia; 2008; 77(3):303-10. PubMed ID: 18683645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Channeling of TCA cycle intermediates in Saccharomyces cerevisiae.
    Ira ; Sonawat HM
    Indian J Biochem Biophys; 1998 Oct; 35(5):260-5. PubMed ID: 10410458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway.
    Wanke M; Skorupinska-Tudek K; Swiezewska E
    Acta Biochim Pol; 2001; 48(3):663-72. PubMed ID: 11833775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucus carota L.): metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways.
    Hampel D; Mosandl A; Wüst M
    Phytochemistry; 2005 Feb; 66(3):305-11. PubMed ID: 15680987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein.
    Rohdich F; Hecht S; Gärtner K; Adam P; Krieger C; Amslinger S; Arigoni D; Bacher A; Eisenreich W
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1158-63. PubMed ID: 11818558
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosynthesis of abscisic acid by the non-mevalonate pathway in plants, and by the mevalonate pathway in fungi.
    Hirai N; Yoshida R; Todoroki Y; Ohigashi H
    Biosci Biotechnol Biochem; 2000 Jul; 64(7):1448-58. PubMed ID: 10945263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis?
    Hemmerlin A; Harwood JL; Bach TJ
    Prog Lipid Res; 2012 Apr; 51(2):95-148. PubMed ID: 22197147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The biosynthesis of C5-C20 terpenoid compounds.
    Beale MH
    Nat Prod Rep; 1990 Feb; 7(1):25-39. PubMed ID: 2193259
    [No Abstract]   [Full Text] [Related]  

  • 34. Biosynthesis of terpenoid alkaloids.
    Battersby AR
    Biochem Soc Symp; 1970; 29():157-68. PubMed ID: 4944435
    [No Abstract]   [Full Text] [Related]  

  • 35. Biosynthesis of the dimethylallyl moiety of glabrol in Glycyrrhiza glabra hairy root cultures via a non-mevalonate pathway.
    Asada Y; Li W; Yoshikawa T
    Phytochemistry; 2000 Oct; 55(4):323-6. PubMed ID: 11117880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monoterpene biosynthesis in the liverwort Conocephalum conicum: demonstration of sabinene synthase and bornyl diphosphate synthase.
    Adam KP; Croteau R
    Phytochemistry; 1998 Sep; 49(2):475-80. PubMed ID: 9747540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On-line analysis of the (13)CO(2) labeling of leaf isoprene suggests multiple subcellular origins of isoprene precursors.
    Karl T; Fall R; Rosenstiel TN; Prazeller P; Larsen B; Seufert G; Lindinger W
    Planta; 2002 Oct; 215(6):894-905. PubMed ID: 12355149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosynthetic evidence supporting the generation of terpene chemodiversity in marine mollusks of the genus Doriopsilla.
    Gaspar H; Cutignano A; Ferreira T; Calado G; Cimino G; Fontana A
    J Nat Prod; 2008 Dec; 71(12):2053-6. PubMed ID: 19053515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two new compounds from Ligularia dolichobotrys.
    Li EW; Gao K; Jia ZJ
    Pharmazie; 2004 Aug; 59(8):646-9. PubMed ID: 15378858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biosynthesis of the sesquiterpene hodgsonox from the New Zealand liverwort Lepidolaena hodgsoniae.
    Barlow AJ; Lorimer SD; Morgan ER; Weavers RT
    Phytochemistry; 2003 May; 63(1):25-9. PubMed ID: 12657293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.