These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 9633655)
41. An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria. Zourob M; Mohr S; Brown BJ; Fielden PR; McDonnell MB; Goddard NJ Lab Chip; 2005 Dec; 5(12):1360-5. PubMed ID: 16286966 [TBL] [Abstract][Full Text] [Related]
42. An improved ELISA method for the detection of Salmonella typhimurium. Prusak-Sochaczewski E; Luong JH J Appl Bacteriol; 1989 Feb; 66(2):127-35. PubMed ID: 2651375 [TBL] [Abstract][Full Text] [Related]
43. In-situ fluorescent immunomagnetic multiplex detection of foodborne pathogens in very low numbers. Cho IH; Mauer L; Irudayaraj J Biosens Bioelectron; 2014 Jul; 57():143-8. PubMed ID: 24583684 [TBL] [Abstract][Full Text] [Related]
44. Serum survival and plasmid possession by strains of Salmonella enteritidis, Salm. typhimurium and Salm. virchow. Chart H; Threlfall EJ; Powell NG; Rowe B J Appl Bacteriol; 1996 Jan; 80(1):31-6. PubMed ID: 8698651 [TBL] [Abstract][Full Text] [Related]
45. A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium. Ko S; Grant SA Biosens Bioelectron; 2006 Jan; 21(7):1283-90. PubMed ID: 16040238 [TBL] [Abstract][Full Text] [Related]
46. Use of fluorescently labeled phage in the detection and identification of bacterial species. Mosier-Boss PA; Lieberman SH; Andrews JM; Rohwer FL; Wegley LE; Breitbart M Appl Spectrosc; 2003 Sep; 57(9):1138-44. PubMed ID: 14611044 [TBL] [Abstract][Full Text] [Related]
47. The protective effect of Bdellovibrio-and-like organisms (BALO) on tilapia fish fillets against Salmonella enterica ssp. enterica serovar Typhimurium. Lu F; Cai J Lett Appl Microbiol; 2010 Dec; 51(6):625-31. PubMed ID: 20880363 [TBL] [Abstract][Full Text] [Related]
48. Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria. Dwarakanath S; Bruno JG; Shastry A; Phillips T; John AA; Kumar A; Stephenson LD Biochem Biophys Res Commun; 2004 Dec; 325(3):739-43. PubMed ID: 15541352 [TBL] [Abstract][Full Text] [Related]
49. Changes in culturability and virulence of Salmonella typhimurium during long-term starvation under desiccating conditions. Lesn J; Berthet S; Binard S; Rouxel A; Humbert F Int J Food Microbiol; 2000 Sep; 60(2-3):195-203. PubMed ID: 11016609 [TBL] [Abstract][Full Text] [Related]
50. Optimization of two immunofluorescent antibodies for the detection of Escherichia coli using immunofluorescent microscopy and flow cytometry. McCarthy M; Culloty SC Curr Microbiol; 2011 Feb; 62(2):402-8. PubMed ID: 20676677 [TBL] [Abstract][Full Text] [Related]
51. Survival of dehydrated cells of Salmonella typhimurium LT2 at high temperatures. Kirby RM; Davies R J Appl Bacteriol; 1990 Mar; 68(3):241-6. PubMed ID: 2187845 [TBL] [Abstract][Full Text] [Related]
52. The fate of Salmonella Typhimurium and Escherichia coli O157 on hot boned versus conventionally chilled beef. Reid R; Fanning S; Whyte P; Kerry J; Bolton D Meat Sci; 2017 Apr; 126():50-54. PubMed ID: 28038402 [TBL] [Abstract][Full Text] [Related]
53. Adaptations in the physiological heterogeneity and viability of Shigella dysenteriae, Shigella flexneri and Salmonella typhimurium, after exposure to simulated gastric acid fluid. Singh A; Barnard TG Microb Pathog; 2017 Dec; 113():378-384. PubMed ID: 29138083 [TBL] [Abstract][Full Text] [Related]
54. Comparison of flow cytometry and epifluorescence microscopy for counting bacteria in aquatic ecosystems. Monfort P; Baleux B Cytometry; 1992; 13(2):188-92. PubMed ID: 1547667 [TBL] [Abstract][Full Text] [Related]
55. Immuno-capture and in situ detection of Salmonella typhimurium on a novel microfluidic chip. Wang R; Ni Y; Xu Y; Jiang Y; Dong C; Chuan N Anal Chim Acta; 2015 Jan; 853():710-717. PubMed ID: 25467522 [TBL] [Abstract][Full Text] [Related]
56. Effect of cell immobilization on the growth dynamics of Salmonella Typhimurium and Escherichia coli at suboptimal temperatures. Smet C; Van Derlinden E; Mertens L; Noriega E; Van Impe JF Int J Food Microbiol; 2015 Sep; 208():75-83. PubMed ID: 26057111 [TBL] [Abstract][Full Text] [Related]
57. Antimicrobial susceptibility and internalization of Salmonella Typhimurium in vacuum-tumbled marinated beef products. Pokharel S; Brooks JC; Martin JN; Brashears MM Lett Appl Microbiol; 2016 Dec; 63(6):412-418. PubMed ID: 27577863 [TBL] [Abstract][Full Text] [Related]
58. Effects of storage and the presence of a beef microflora on the thermal resistance of Salmonella Typhimurium DT104 in beef and broth systems. McCann MS; McGovern AC; McDowell DA; Blair IS; Sheridan JJ J Appl Microbiol; 2007 Jun; 102(6):1561-9. PubMed ID: 17578421 [TBL] [Abstract][Full Text] [Related]
59. Detection of Escherichia coli and Salmonella typhimurium using interdigitated microelectrode capacitive immunosensors: the importance of transducer geometry. Laczka O; Baldrich E; Muñoz FX; del Campo FJ Anal Chem; 2008 Oct; 80(19):7239-47. PubMed ID: 18771278 [TBL] [Abstract][Full Text] [Related]
60. Simultaneous detection of Staphylococcus aureus and Salmonella typhimurium using multicolor time-resolved fluorescence nanoparticles as labels. Wang X; Huang Y; Wu S; Duan N; Xu B; Wang Z Int J Food Microbiol; 2016 Nov; 237():172-179. PubMed ID: 27592261 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]