BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 9633803)

  • 1. Differential effects of central and peripheral nerves on macrophages and microglia.
    Zeev-Brann AB; Lazarov-Spiegler O; Brenner T; Schwartz M
    Glia; 1998 Jul; 23(3):181-90. PubMed ID: 9633803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peripheral nerve-stimulated macrophages simulate a peripheral nerve-like regenerative response in rat transected optic nerve.
    Lazarov-Spiegler O; Solomon AS; Schwartz M
    Glia; 1998 Nov; 24(3):329-37. PubMed ID: 9775984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of the mononuclear phagocyte response to Wallerian degeneration of the optic nerve.
    Lawson LJ; Frost L; Risbridger J; Fearn S; Perry VH
    J Neurocytol; 1994 Dec; 23(12):729-44. PubMed ID: 7897440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transplantation of activated macrophages overcomes central nervous system regrowth failure.
    Lazarov-Spiegler O; Solomon AS; Zeev-Brann AB; Hirschberg DL; Lavie V; Schwartz M
    FASEB J; 1996 Sep; 10(11):1296-302. PubMed ID: 8836043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential regulation of myelin phagocytosis by macrophages/microglia, involvement of target myelin, Fc receptors and activation by intravenous immunoglobulins.
    Kuhlmann T; Wendling U; Nolte C; Zipp F; Maruschak B; Stadelmann C; Siebert H; Brück W
    J Neurosci Res; 2002 Jan; 67(2):185-90. PubMed ID: 11782962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lesion-associated expression of transforming growth factor-beta-2 in the rat nervous system: evidence for down-regulating the phagocytic activity of microglia and macrophages.
    Stoll G; Schroeter M; Jander S; Siebert H; Wollrath A; Kleinschnitz C; Brück W
    Brain Pathol; 2004 Jan; 14(1):51-8. PubMed ID: 14997937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Link between optic nerve regrowth failure and macrophage stimulation in mammals.
    Lazarov-Spiegler O; Solomon AS; Schwartz M
    Vision Res; 1999 Jan; 39(1):169-75. PubMed ID: 10211404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential macrophage responses in the peripheral and central nervous system during wallerian degeneration of axons.
    Avellino AM; Hart D; Dailey AT; MacKinnon M; Ellegala D; Kliot M
    Exp Neurol; 1995 Dec; 136(2):183-98. PubMed ID: 7498408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sciatic nerve conditioning lesion increases macrophage response but it does not promote the regeneration of injured optic nerves.
    Salegio EA; Pollard AN; Smith M; Zhou XF
    Brain Res; 2010 Nov; 1361():12-22. PubMed ID: 20863815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nerve fiber growth in culture on tissue substrata from central and peripheral nervous systems.
    Carbonetto S; Evans D; Cochard P
    J Neurosci; 1987 Feb; 7(2):610-20. PubMed ID: 3819825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential recruitment of CD8+ macrophages during Wallerian degeneration in the peripheral and central nervous system.
    Jander S; Lausberg F; Stoll G
    Brain Pathol; 2001 Jan; 11(1):27-38. PubMed ID: 11145201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrophage response during axonal regeneration in the axolotl central and peripheral nervous system.
    Zammit PS; Clarke JD; Golding JP; Goodbrand IA; Tonge DA
    Neuroscience; 1993 Jun; 54(3):781-9. PubMed ID: 8332261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glial cell proliferation in the spinal cord after dorsal rhizotomy or sciatic nerve transection in the adult rat.
    Liu L; Rudin M; Kozlova EN
    Exp Brain Res; 2000 Mar; 131(1):64-73. PubMed ID: 10759172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrophage-derived factors stimulate optic nerve regeneration.
    Yin Y; Cui Q; Li Y; Irwin N; Fischer D; Harvey AR; Benowitz LI
    J Neurosci; 2003 Mar; 23(6):2284-93. PubMed ID: 12657687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macrophage recruitment to acutely injured central nervous system is inhibited by a resident factor: a basis for an immune-brain barrier.
    Hirschberg DL; Schwartz M
    J Neuroimmunol; 1995 Aug; 61(1):89-96. PubMed ID: 7560018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factor XIIIa as a nerve-associated transglutaminase.
    Monsonego A; Mizrahi T; Eitan S; Moalem G; Bárdos H; Adány R; Schwartz M
    FASEB J; 1998 Sep; 12(12):1163-71. PubMed ID: 9737719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve.
    Berry M; Carlile J; Hunter A
    J Neurocytol; 1996 Feb; 25(2):147-70. PubMed ID: 8699196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soluble factor(s) produced in injured fish optic nerve regulate the postinjury number of oligodendrocytes: possible role of macrophages.
    Sivron T; Cohen A; Hirschberg DL; Jeserich G; Schwartz M
    Glia; 1991; 4(6):591-601. PubMed ID: 1835961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact inhibition in the failure of mammalian CNS axonal regeneration.
    Johnson AR
    Bioessays; 1993 Dec; 15(12):807-13. PubMed ID: 8141799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MHC-positive, ramified macrophages in the normal and injured rat peripheral nervous system.
    Monaco S; Gehrmann J; Raivich G; Kreutzberg GW
    J Neurocytol; 1992 Sep; 21(9):623-34. PubMed ID: 1403008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.