These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 9634176)
1. Carbon release from purified chemoautotrophic bacterial symbionts of the hydrothermal vent tubeworm Riftia pachyptila. Felbeck H; Jarchow J Physiol Zool; 1998; 71(3):294-302. PubMed ID: 9634176 [TBL] [Abstract][Full Text] [Related]
2. Cooccurring Activities of Two Autotrophic Pathways in Symbionts of the Hydrothermal Vent Tubeworm Leonard JM; Mitchell J; Beinart RA; Delaney JA; Sanders JG; Ellis G; Goddard EA; Girguis PR; Scott KM Appl Environ Microbiol; 2021 Aug; 87(17):e0079421. PubMed ID: 34190607 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen Does Not Appear To Be a Major Electron Donor for Symbiosis with the Deep-Sea Hydrothermal Vent Tubeworm Riftia pachyptila. Mitchell JH; Leonard JM; Delaney J; Girguis PR; Scott KM Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31628148 [TBL] [Abstract][Full Text] [Related]
4. Identification and characterization of a flagellin gene from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Millikan DS; Felbeck H; Stein JL Appl Environ Microbiol; 1999 Jul; 65(7):3129-33. PubMed ID: 10388713 [TBL] [Abstract][Full Text] [Related]
5. Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature. Girguis PR; Childress JJ J Exp Biol; 2006 Sep; 209(Pt 18):3516-28. PubMed ID: 16943492 [TBL] [Abstract][Full Text] [Related]
6. Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont. Markert S; Gardebrecht A; Felbeck H; Sievert SM; Klose J; Becher D; Albrecht D; Thürmer A; Daniel R; Kleiner M; Hecker M; Schweder T Proteomics; 2011 Aug; 11(15):3106-17. PubMed ID: 21710568 [TBL] [Abstract][Full Text] [Related]
7. Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis. Hinzke T; Kleiner M; Meister M; Schlüter R; Hentschker C; Pané-Farré J; Hildebrandt P; Felbeck H; Sievert SM; Bonn F; Völker U; Becher D; Schweder T; Markert S Elife; 2021 Jan; 10():. PubMed ID: 33404502 [TBL] [Abstract][Full Text] [Related]
8. A delta13C-based carbon flux model for the hydrothermal vent chemoautotrophic symbiosis Riftia pachyptila predicts sizeable CO(2) gradients at the host-symbiont interface. Scott KM Environ Microbiol; 2003 May; 5(5):424-32. PubMed ID: 12713468 [TBL] [Abstract][Full Text] [Related]
9. Endosymbiont genomes yield clues of tubeworm success. Li Y; Liles MR; Halanych KM ISME J; 2018 Nov; 12(11):2785-2795. PubMed ID: 30022157 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the gene encoding the autotrophic ATP sulfurylase from the bacterial endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Laue BE; Nelson DC J Bacteriol; 1994 Jun; 176(12):3723-9. PubMed ID: 8206850 [TBL] [Abstract][Full Text] [Related]
11. Fate of nitrate acquired by the tubeworm Riftia pachyptila. Girguis PR; Lee RW; Desaulniers N; Childress JJ; Pospesel M; Felbeck H; Zal F Appl Environ Microbiol; 2000 Jul; 66(7):2783-90. PubMed ID: 10877768 [TBL] [Abstract][Full Text] [Related]
12. Nitrogen metabolites and related enzymatic activities in the body fluids and tissues of the hydrothermal vent tubeworm Riftia pachyptila. De Cian M; Regnault M; Lallier FH J Exp Biol; 2000 Oct; 203(Pt 19):2907-20. PubMed ID: 10976028 [TBL] [Abstract][Full Text] [Related]
13. Linking hydrothermal geochemistry to organismal physiology: physiological versatility in Riftia pachyptila from sedimented and basalt-hosted vents. Robidart JC; Roque A; Song P; Girguis PR PLoS One; 2011; 6(7):e21692. PubMed ID: 21779334 [TBL] [Abstract][Full Text] [Related]
14. Characterizing the plasticity of nitrogen metabolism by the host and symbionts of the hydrothermal vent chemoautotrophic symbioses Ridgeia piscesae. Liao L; Wankel SD; Wu M; Cavanaugh CM; Girguis PR Mol Ecol; 2014 Mar; 23(6):1544-1557. PubMed ID: 24237389 [TBL] [Abstract][Full Text] [Related]
15. Insights into Symbiont Population Structure among Three Vestimentiferan Tubeworm Host Species at Eastern Pacific Spreading Centers. Perez M; Juniper SK Appl Environ Microbiol; 2016 Sep; 82(17):5197-205. PubMed ID: 27316954 [TBL] [Abstract][Full Text] [Related]
16. A histidine protein kinase homolog from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Hughes DS; Felbeck H; Stein JL Appl Environ Microbiol; 1997 Sep; 63(9):3494-8. PubMed ID: 9293000 [TBL] [Abstract][Full Text] [Related]
17. Aspects of life development at deep sea hydrothermal vents. Gaill F FASEB J; 1993 Apr; 7(6):558-65. PubMed ID: 8472894 [TBL] [Abstract][Full Text] [Related]
18. Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Robidart JC; Bench SR; Feldman RA; Novoradovsky A; Podell SB; Gaasterland T; Allen EE; Felbeck H Environ Microbiol; 2008 Mar; 10(3):727-37. PubMed ID: 18237306 [TBL] [Abstract][Full Text] [Related]
19. Physiological homogeneity among the endosymbionts of Riftia pachyptila and Tevnia jerichonana revealed by proteogenomics. Gardebrecht A; Markert S; Sievert SM; Felbeck H; Thürmer A; Albrecht D; Wollherr A; Kabisch J; Le Bris N; Lehmann R; Daniel R; Liesegang H; Hecker M; Schweder T ISME J; 2012 Apr; 6(4):766-76. PubMed ID: 22011719 [TBL] [Abstract][Full Text] [Related]
20. Effects of metabolite uptake on proton-equivalent elimination by two species of deep-sea vestimentiferan tubeworm, Riftia pachyptila and Lamellibrachia cf luymesi: proton elimination is a necessary adaptation to sulfide-oxidizing chemoautotrophic symbionts. Girguis PR; Childress JJ; Freytag JK; Klose K; Stuber R J Exp Biol; 2002 Oct; 205(Pt 19):3055-66. PubMed ID: 12200408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]