BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 9634560)

  • 1. Acetylcholine triggers L-glutamate exocytosis via nicotinic receptors and inhibits melatonin synthesis in rat pinealocytes.
    Yamada H; Ogura A; Koizumi S; Yamaguchi A; Moriyama Y
    J Neurosci; 1998 Jul; 18(13):4946-52. PubMed ID: 9634560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The L-type Ca2+ channel is involved in microvesicle-mediated glutamate exocytosis from rat pinealocytes.
    Yamada H; Yamamoto A; Takahashi M; Michibata H; Kumon H; Moriyama Y
    J Pineal Res; 1996 Oct; 21(3):165-74. PubMed ID: 8981261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvesicle-mediated exocytosis of glutamate is a novel paracrine-like chemical transduction mechanism and inhibits melatonin secretion in rat pinealocytes.
    Yamada H; Yamamoto A; Yodozawa S; Kozaki S; Takahashi M; Morita M; Michibata H; Furuichi T; Mikoshiba K; Moriyama Y
    J Pineal Res; 1996 Oct; 21(3):175-91. PubMed ID: 8981262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Norepinephrine triggers Ca2+-dependent exocytosis of 5-hydroxytryptamine from rat pinealocytes in culture.
    Yamada H; Hayashi M; Uehara S; Kinoshita M; Muroyama A; Watanabe M; Takei K; Moriyama Y
    J Neurochem; 2002 May; 81(3):533-40. PubMed ID: 12065661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionotropic glutamate receptors trigger microvesicle-mediated exocytosis of L-glutamate in rat pinealocytes.
    Yatsushiro S; Yamada H; Hayashi M; Yamamoto A; Moriyama Y
    J Neurochem; 2000 Jul; 75(1):288-97. PubMed ID: 10854273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyindole-O-methyltransferase is another target for L-glutamate-evoked inhibition of melatonin synthesis in rat pinealocytes.
    Ishio S; Yamada H; Craft CM; Moriyama Y
    Brain Res; 1999 Dec; 850(1-2):73-8. PubMed ID: 10629750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L-aspartate-evoked inhibition of melatonin production in rat pineal glands.
    Yamada H; Yamaguchi A; Moriyama Y
    Neurosci Lett; 1997 Jun; 228(2):103-6. PubMed ID: 9209109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single transmitter regulates gene expression through two separate mechanisms: cholinergic regulation of phenylethanolamine N-methyltransferase mRNA via nicotinic and muscarinic pathways.
    Evinger MJ; Ernsberger P; Regunathan S; Joh TH; Reis DJ
    J Neurosci; 1994 Apr; 14(4):2106-16. PubMed ID: 7512633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetylcholine induces Ca2+ signaling in chicken retinal pigmented epithelial cells during dedifferentiation.
    Sekiguchi-Tonosaki M; Obata M; Haruki A; Himi T; Kosaka J
    Am J Physiol Cell Physiol; 2009 May; 296(5):C1195-206. PubMed ID: 19244481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabotropic glutamate receptors negatively regulate melatonin synthesis in rat pinealocytes.
    Yamada H; Yatsushiro S; Ishio S; Hayashi M; Nishi T; Yamamoto A; Futai M; Yamaguchi A; Moriyama Y
    J Neurosci; 1998 Mar; 18(6):2056-62. PubMed ID: 9482792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of Ca2+ oscillation and melatonin secretion by BKCa channel activity in rat pinealocytes.
    Mizutani H; Yamamura H; Muramatsu M; Hagihara Y; Suzuki Y; Imaizumi Y
    Am J Physiol Cell Physiol; 2016 May; 310(9):C740-7. PubMed ID: 26791489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cholinergic drugs on the concentration of intracellular free calcium of rat pituitary intermediate lobe cells.
    Némethy Z; Makara GB; Acs Z
    Brain Res Bull; 1999 Sep; 50(1):53-7. PubMed ID: 10507472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium channel drugs affect nocturnal serotonin N-acetyltransferase (NAT) activity in rat pineal gland.
    Zawilska JB; Nowak JZ
    J Neural Transm Gen Sect; 1991; 84(3):171-82. PubMed ID: 1715719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptophan hydroxylase is modulated by L-type calcium channels in the rat pineal gland.
    Barbosa R; Scialfa JH; Terra IM; Cipolla-Neto J; Simonneaux V; Afeche SC
    Life Sci; 2008 Feb; 82(9-10):529-35. PubMed ID: 18221757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three distinct Ca(2+) influx pathways couple acetylcholine receptor activation to catecholamine secretion from PC12 cells.
    Taylor SC; Peers C
    J Neurochem; 2000 Oct; 75(4):1583-9. PubMed ID: 10987839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of nicotinic receptor channels by adrenergic stimulation in rat pinealocytes.
    Yoon JY; Jung SR; Hille B; Koh DS
    Am J Physiol Cell Physiol; 2014 Apr; 306(8):C726-35. PubMed ID: 24553185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CCCP enhances catecholamine release from the perfused rat adrenal medulla.
    Lim DY; Park HG; Miwa S
    Auton Neurosci; 2006 Jul; 128(1-2):37-47. PubMed ID: 16461015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholinergic transmission via central synapses in the locust nervous system.
    Gauglitz S; Pflüger HJ
    J Comp Physiol A; 2001 Dec; 187(10):825-36. PubMed ID: 11800039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nicotinic and muscarinic components in acetylcholine stimulation of porcine adrenal medullary cells.
    Nassar-Gentina V; Catalán L; Luxoro M
    Mol Cell Biochem; 1997 Apr; 169(1-2):107-13. PubMed ID: 9089637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous and nicotine-induced Ca2+ oscillations mediated by Ca2+ influx in rat pinealocytes.
    Mizutani H; Yamamura H; Muramatsu M; Kiyota K; Nishimura K; Suzuki Y; Ohya S; Imaizumi Y
    Am J Physiol Cell Physiol; 2014 Jun; 306(11):C1008-16. PubMed ID: 24696145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.