These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 9634827)

  • 1. Inactivation of MET10 in brewer's yeast specifically increases SO2 formation during beer production.
    Hansen J; Kielland-Brandt MC
    Nat Biotechnol; 1996 Nov; 14(11):1587-91. PubMed ID: 9634827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of production and secretion beta(1-->4) glucanase with Saccharomyces cerevesiae by replacing the MET10 gene with egl1 gene from Trichoderma reesei.
    Lu Y; Wang TH; Ding XL
    Lett Appl Microbiol; 2009 Dec; 49(6):702-7. PubMed ID: 19780951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of MET2 in brewer's yeast increases the level of sulfite in beer.
    Hansen J; Kielland-Brandt MC
    J Biotechnol; 1996 Sep; 50(1):75-87. PubMed ID: 8987848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological characterization of brewer's yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts.
    Piddocke MP; Kreisz S; Heldt-Hansen HP; Nielsen KF; Olsson L
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):453-64. PubMed ID: 19343343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of SSU1 multi-copy expression on Saccharomyces cerevisiae sulphite production].
    Chen Y; Shen S; Wang Y; Xiao D
    Wei Sheng Wu Xue Bao; 2008 Dec; 48(12):1609-15. PubMed ID: 19271535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Over-expression of GSH1 gene and disruption of PEP4 gene in self-cloning industrial brewer's yeast.
    Wang ZY; He XP; Zhang BR
    Int J Food Microbiol; 2007 Nov; 119(3):192-9. PubMed ID: 17881073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Advances in anti-staling brewer's yeast].
    Yang J; Wang J; Li Y; Zheng F; Zhong J; Li Q
    Sheng Wu Gong Cheng Xue Bao; 2017 Apr; 33(4):541-551. PubMed ID: 28920388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic improvement of brewer's yeast: current state, perspectives and limits.
    Saerens SM; Duong CT; Nevoigt E
    Appl Microbiol Biotechnol; 2010 May; 86(5):1195-212. PubMed ID: 20195857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two divergent MET10 genes, one from Saccharomyces cerevisiae and one from Saccharomyces carlsbergensis, encode the alpha subunit of sulfite reductase and specify potential binding sites for FAD and NADPH.
    Hansen J; Cherest H; Kielland-Brandt MC
    J Bacteriol; 1994 Oct; 176(19):6050-8. PubMed ID: 7928966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of GAI gene and disruption of PEP4 gene in an industrial brewer's yeast strain.
    Liu XF; Wang ZY; Wang JJ; Lu Y; He XP; Zhang BR
    Lett Appl Microbiol; 2009 Jul; 49(1):117-23. PubMed ID: 19413763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production.
    Cordente AG; Heinrich A; Pretorius IS; Swiegers JH
    FEMS Yeast Res; 2009 May; 9(3):446-59. PubMed ID: 19236486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Saccharomyces cerevisiae producing higher levels of sulfur dioxide and glutathione to improve beer flavor stability.
    Chen Y; Yang X; Zhang S; Wang X; Guo C; Guo X; Xiao D
    Appl Biochem Biotechnol; 2012 Jan; 166(2):402-13. PubMed ID: 22081326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae.
    Coghe S; Benoot K; Delvaux F; Vanderhaegen B; Delvaux FR
    J Agric Food Chem; 2004 Feb; 52(3):602-8. PubMed ID: 14759156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defective quiescence entry promotes the fermentation performance of bottom-fermenting brewer's yeast.
    Oomuro M; Kato T; Zhou Y; Watanabe D; Motoyama Y; Yamagishi H; Akao T; Aizawa M
    J Biosci Bioeng; 2016 Nov; 122(5):577-582. PubMed ID: 27212268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of wort gravity and nitrogen level on fermentation performance of brewer's yeast and the formation of flavor volatiles.
    Lei H; Zhao H; Yu Z; Zhao M
    Appl Biochem Biotechnol; 2012 Mar; 166(6):1562-74. PubMed ID: 22281783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beer volatile compounds and their application to low-malt beer fermentation.
    Kobayashi M; Shimizu H; Shioya S
    J Biosci Bioeng; 2008 Oct; 106(4):317-23. PubMed ID: 19000606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring the influence of high-gravity brewing and fermentation temperature on flavour formation by analysis of gene expression levels in brewing yeast.
    Saerens SM; Verbelen PJ; Vanbeneden N; Thevelein JM; Delvaux FR
    Appl Microbiol Biotechnol; 2008 Oct; 80(6):1039-51. PubMed ID: 18751696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic flux and nodes control analysis of brewer's yeasts under different fermentation temperature during beer brewing.
    Yu Z; Zhao H; Zhao M; Lei H; Li H
    Appl Biochem Biotechnol; 2012 Dec; 168(7):1938-52. PubMed ID: 23065402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction and evaluation of self-cloning bottom-fermenting yeast with high SSU1 expression.
    Iijima K; Ogata T
    J Appl Microbiol; 2010 Dec; 109(6):1906-13. PubMed ID: 20681972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.