These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9635129)

  • 1. Influence of phenoxyherbicides and their metabolites on the form of oxy- and deoxyhemoglobin of vertebrates.
    Bukowska B; Reszka E; Duda W
    Biochem Mol Biol Int; 1998 Jun; 45(1):47-59. PubMed ID: 9635129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalase activity in human erythrocytes: effect of phenoxyherbicides and their metabolites.
    Bukowska B; Chajdys A; Duda W; Duchnowicz P
    Cell Biol Int; 2000; 24(10):705-11. PubMed ID: 11023648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorophenol hydroxylases encoded by plasmid pJP4 differentially contribute to chlorophenoxyacetic acid degradation.
    Ledger T; Pieper DH; González B
    Appl Environ Microbiol; 2006 Apr; 72(4):2783-92. PubMed ID: 16597983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of three common chlorophenoxyacetic acid herbicides into the rat brain.
    Tyynelä K; Elo HA; Ylitalo P
    Arch Toxicol; 1990; 64(1):61-5. PubMed ID: 2306196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new concept for reduction of diffuse contamination by simultaneous application of pesticide and pesticide-degrading microorganisms.
    Onneby K; Jonsson A; Stenström J
    Biodegradation; 2010 Feb; 21(1):21-9. PubMed ID: 19557524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorinated phenoxyacetic acids and chlorophenols in the modified Allium test.
    Fiskesjö G; Lassen C; Renberg L
    Chem Biol Interact; 1981 Mar; 34(3):333-44. PubMed ID: 7460089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of phenoxy acetic herbicides on growth, photosynthesis, and nitrogenase activity in cyanobacteria from rice fields.
    Leganés F; Fernández-Valiente E
    Arch Environ Contam Toxicol; 1992 Jan; 22(1):130-4. PubMed ID: 1554245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent regulation of oxygen affinity in hemoglobin. Sensitivity of bovine hemoglobin to chloride ions.
    Fronticelli C; Bucci E; Orth C
    J Biol Chem; 1984 Sep; 259(17):10841-4. PubMed ID: 6469985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide formation from the reaction of nitrite with carp and rabbit hemoglobin at intermediate oxygen saturations.
    Jensen FB
    FEBS J; 2008 Jul; 275(13):3375-87. PubMed ID: 18494799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of uncoupling activities of chlorophenoxy herbicides in rat liver mitochondria.
    Zychlinski L; Zolnierowicz S
    Toxicol Lett; 1990 Jun; 52(1):25-34. PubMed ID: 2356568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The autodeoxygenation of hemoglobin].
    Irzhak LI; Azarov IaE
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1993; (1):125-30. PubMed ID: 8507739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by Cupriavidus gilardii T-1.
    Wu X; Wang W; Liu J; Pan D; Tu X; Lv P; Wang Y; Cao H; Wang Y; Hua R
    J Agric Food Chem; 2017 May; 65(18):3711-3720. PubMed ID: 28434228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dichlorprop and mecoprop on respiration and transformation of nitrogen in two soils.
    Marsh JA; Davies HA
    Bull Environ Contam Toxicol; 1981 Jan; 26(1):108-15. PubMed ID: 7225612
    [No Abstract]   [Full Text] [Related]  

  • 14. Study of the degradation of the herbicides 2,4-D and MCPA at different depths in contaminated agricultural soil.
    Crespin MA; Gallego M; Valcárcel M; González JL
    Environ Sci Technol; 2001 Nov; 35(21):4265-70. PubMed ID: 11718340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by a New Isolated Strain of Achromobacter sp. LZ35.
    Xia ZY; Zhang L; Zhao Y; Yan X; Li SP; Gu T; Jiang JD
    Curr Microbiol; 2017 Feb; 74(2):193-202. PubMed ID: 27933337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and identification of substituted phenols as intermediates of concurrent bacterial degradation of the phenoxy herbicides MCPP and 2,4-D.
    Oh KH; Tuovinen OH
    FEMS Microbiol Lett; 1991 Apr; 63(2-3):141-6. PubMed ID: 2060758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of the phenoxy herbicide MCPA by microbial consortia isolated from a rice field.
    Oh KH; Ahn SK; Yoon KH; Kim YS
    Bull Environ Contam Toxicol; 1995 Oct; 55(4):539-45. PubMed ID: 8555678
    [No Abstract]   [Full Text] [Related]  

  • 18. Comamonas acidovorans strain MC1: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2,4-D and MCPA.
    Müller RH; Jorks S; Kleinsteuber S; Babel W
    Microbiol Res; 1999 Dec; 154(3):241-6. PubMed ID: 10652787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of chlorophenoxy herbicides by coupled Fenton and biological oxidation.
    Sanchis S; Polo AM; Tobajas M; Rodriguez JJ; Mohedano AF
    Chemosphere; 2013 Sep; 93(1):115-22. PubMed ID: 23726010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity of chlorinated phenoxyacetic acid herbicides in the experimental eukaryotic model Saccharomyces cerevisiae: role of pH and of growth phase and size of the yeast cell population.
    Cabral MG; Viegas CA; Teixeira MC; Sá-Correia I
    Chemosphere; 2003 Apr; 51(1):47-54. PubMed ID: 12586155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.