These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 9635158)
1. Effect of endothelium removal on prostaglandin and nitric oxide function in pulmonary resistance arteries in the lamb. Theis JG; Toyoda O; Coceani F Can J Physiol Pharmacol; 1998 Feb; 76(2):182-7. PubMed ID: 9635158 [TBL] [Abstract][Full Text] [Related]
2. EDRF in pulmonary resistance vessels from fetal lamb: stimulation by oxygen and bradykinin. Wang Y; Coceani F Am J Physiol; 1994 Mar; 266(3 Pt 2):H936-43. PubMed ID: 8160841 [TBL] [Abstract][Full Text] [Related]
3. Response of fetal rabbit ductus arteriosus to bradykinin: role of nitric oxide, prostaglandins, and bradykinin receptors. Bateson EA; Schulz R; Olley PM Pediatr Res; 1999 Apr; 45(4 Pt 1):568-74. PubMed ID: 10203150 [TBL] [Abstract][Full Text] [Related]
4. Contractile and relaxing mechanisms in pulmonary resistance arteries of the preterm fetal lamb. Liu YA; Theis JG; Coceani F Biol Neonate; 2000 May; 77(4):253-60. PubMed ID: 10828577 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms underlying endothelium-dependent, nitric oxide- and prostanoid-independent relaxation in monkey and dog coronary arteries. Fujioka H; Ayajiki K; Shinozaki K; Toda N; Okamura T Naunyn Schmiedebergs Arch Pharmacol; 2002 Nov; 366(5):488-95. PubMed ID: 12382080 [TBL] [Abstract][Full Text] [Related]
6. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine. Tanaka Y; Otsuka A; Tanaka H; Shigenobu K Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734 [TBL] [Abstract][Full Text] [Related]
7. Clonidine induces rat aorta relaxation by nitric oxide-dependent and -independent mechanisms. Molin JC; Bendhack LM Vascul Pharmacol; 2004 Aug; 42(1):1-6. PubMed ID: 15664881 [TBL] [Abstract][Full Text] [Related]
8. Relaxation to bradykinin in bovine pulmonary supernumerary arteries can be mediated by both a nitric oxide-dependent and -independent mechanism. Tracey A; Bunton D; Irvine J; MacDonald A; Shaw AM Br J Pharmacol; 2002 Oct; 137(4):538-44. PubMed ID: 12359636 [TBL] [Abstract][Full Text] [Related]
10. ATP-gated potassium channel activity of pulmonary resistance vessels in the lamb. Theis JG; Liu Y; Coceani F Can J Physiol Pharmacol; 1997; 75(10-11):1241-8. PubMed ID: 9431449 [TBL] [Abstract][Full Text] [Related]
11. Endothelium-dependent relaxation induced by cathepsin G in porcine pulmonary arteries. Glusa E; Adam C Br J Pharmacol; 2001 Jun; 133(3):422-8. PubMed ID: 11375259 [TBL] [Abstract][Full Text] [Related]
12. Role of protein kinase G in nitric oxide deficiency-induced supersensitivity to nitrovasodilator in rat pulmonary artery. Gupta PK; Subramani J; Singh TU; Leo MD; Sikarwar AS; Prakash VR; Mishra SK J Cardiovasc Pharmacol; 2008 May; 51(5):450-6. PubMed ID: 18418274 [TBL] [Abstract][Full Text] [Related]
14. Involvement of endothelial NO in the dilator effect of VIP on rat isolated pulmonary artery. Anaid Shahbazian ; Petkov V; Baykuscheva-Gentscheva T; Hoeger H; Painsipp E; Holzer P; Mosgoeller W Regul Pept; 2007 Mar; 139(1-3):102-8. PubMed ID: 17174416 [TBL] [Abstract][Full Text] [Related]
15. Occurrence of endothelium-derived relaxing factor--nitric oxide in the lamb ductus arteriosus. Coceani F; Kelsey L; Seidlitz E Can J Physiol Pharmacol; 1994 Jan; 72(1):82-8. PubMed ID: 8012902 [TBL] [Abstract][Full Text] [Related]
16. Endothelium-dependent and -independent relaxation in the forelimb and hindlimb vasculatures of swine. Newcomer SC; Taylor JC; Bowles DK; Laughlin MH Comp Biochem Physiol A Mol Integr Physiol; 2007 Oct; 148(2):292-300. PubMed ID: 17544306 [TBL] [Abstract][Full Text] [Related]
17. Involvement of gap junctions in bradykinin-induced relaxation of bovine pulmonary supernumerary arteries before and after inhibition of nitric oxide/guanylate cyclase. Tracey A; MacDonald A; Shaw AM Clin Sci (Lond); 2002 Dec; 103(6):553-7. PubMed ID: 12444907 [TBL] [Abstract][Full Text] [Related]
18. Role of nitric oxide and prostaglandin systems in lithium modulation of acetylcholine vasodilation. Rahimzadeh-Rofouyi B; Afsharimani B; Moezi L; Ebrahimi F; Mehr SE; Mombeini T; Ghahremani MH; Dehpour AR J Cardiovasc Pharmacol; 2007 Dec; 50(6):641-6. PubMed ID: 18091580 [TBL] [Abstract][Full Text] [Related]
19. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed. Pimentel AM; Costa CA; Carvalho LC; Brandão RM; Rangel BM; Tano T; Soares de Moura R; Resende AC Vascul Pharmacol; 2007 May; 46(5):353-9. PubMed ID: 17258511 [TBL] [Abstract][Full Text] [Related]
20. Contribution of glibenclamide-sensitive, ATP-dependent K+ channel activation to acetophenone analogues-mediated in vitro pulmonary artery relaxation of rat. Seto SW; Ho YY; Hui HN; Au AL; Kwan YW Life Sci; 2006 Jan; 78(6):631-9. PubMed ID: 16112684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]