These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9635758)

  • 21. Photogating of ionic currents across lipid bilayers. Electrostatics of ions and dipoles inside the membrane.
    Mauzerall DC; Drain CM
    Biophys J; 1992 Dec; 63(6):1544-55. PubMed ID: 1489912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dielectric properties of alginate beads and bound water relaxation studied by electrorotation.
    Esch M; Sukhorukov VL; Kürschner M; Zimmermann U
    Biopolymers; 1999 Sep; 50(3):227-37. PubMed ID: 10397786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poloxamer 188 decreases susceptibility of artificial lipid membranes to electroporation.
    Sharma V; Stebe K; Murphy JC; Tung L
    Biophys J; 1996 Dec; 71(6):3229-41. PubMed ID: 8968593
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement of dielectric properties of cells at single-cell resolution using electrorotation.
    Li Y; Huang C; Han SI; Han A
    Biomed Microdevices; 2022 Jun; 24(2):23. PubMed ID: 35771277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrophobic ion transfer between membranes of adjacent hepatocytes: a possible probe of tight junction structure.
    Turin L; Béhé P; Plonsky I; Dunina-Barkovskaya A
    Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9365-9. PubMed ID: 1924400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alterations of the plasma membrane caused by murine polyomavirus proliferation: an electrorotation study.
    Berardi V; Aiello C; Bonincontro A; Risuleo G
    J Membr Biol; 2009 May; 229(1):19-25. PubMed ID: 19430712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrorotation of lymphocytes--the influence of membrane events and nucleus.
    Ziervogel H; Glaser R; Schadow D; Heymann S
    Biosci Rep; 1986 Nov; 6(11):973-82. PubMed ID: 3580521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrorotation of colloidal particles and cells depends on surface charge.
    Maier H
    Biophys J; 1997 Sep; 73(3):1617-26. PubMed ID: 9284328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in Friend murine erythroleukaemia cell membranes during induced differentiation determined by electrorotation.
    Wang XB; Huang Y; Gascoyne PR; Becker FF; Hölzel R; Pethig R
    Biochim Biophys Acta; 1994 Aug; 1193(2):330-44. PubMed ID: 8054355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring the permeabilization of a single cell in a microfluidic device, through the estimation of its dielectric properties based on combined dielectrophoresis and electrorotation in situ experiments.
    Trainito CI; Français O; Le Pioufle B
    Electrophoresis; 2015 May; 36(9-10):1115-22. PubMed ID: 25641658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of sequentially-staged cancer cells using electrorotation.
    Trainito CI; Sweeney DC; Čemažar J; Schmelz EM; Français O; Le Pioufle B; Davalos RV
    PLoS One; 2019; 14(9):e0222289. PubMed ID: 31536516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrophysiological behavior of the TolC channel-tunnel in planar lipid bilayers.
    Andersen C; Hughes C; Koronakis V
    J Membr Biol; 2002 Jan; 185(1):83-92. PubMed ID: 11891567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane surface-charge titration probed by gramicidin A channel conductance.
    Rostovtseva TK; Aguilella VM; Vodyanoy I; Bezrukov SM; Parsegian VA
    Biophys J; 1998 Oct; 75(4):1783-92. PubMed ID: 9746520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magainin 2 channel formation in planar lipid membranes: the role of lipid polar groups and ergosterol.
    Gallucci E; Meleleo D; Micelli S; Picciarelli V
    Eur Biophys J; 2003 Mar; 32(1):22-32. PubMed ID: 12632203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of adrenocorticotropin-(1-24)-tetracosapeptide with lipid bilayers.
    Hianik T; Sargent DF; Smriga M; Sikurová L; Nemcová P
    Gen Physiol Biophys; 1996 Jun; 15(3):239-50. PubMed ID: 9076506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane changes associated with the temperature-sensitive P85gag-mos-dependent transformation of rat kidney cells as determined by dielectrophoresis and electrorotation.
    Huang Y; Wang XB; Becker FF; Gascoyne PR
    Biochim Biophys Acta; 1996 Jun; 1282(1):76-84. PubMed ID: 8679663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrical tweezer for highly parallelized electrorotation measurements over a wide frequency bandwidth.
    Rohani A; Varhue W; Su YH; Swami NS
    Electrophoresis; 2014 Jul; 35(12-13):1795-802. PubMed ID: 24668830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the dielectrically observable consequences of the diffusional motions of lipids and proteins in membranes. 2. Experiments with microbial cells, protoplasts and membrane vesicles.
    Harris CM; Kell DB
    Eur Biophys J; 1985; 13(1):11-24. PubMed ID: 3935420
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reversible and irreversible rotating field-induced membrane modifications.
    Fuhr G; Müller T; Hagedorn R
    Biochim Biophys Acta; 1989 Mar; 980(1):1-8. PubMed ID: 2923891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.