These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 9635765)
1. ATPase and shortening rates in frog fast skeletal myofibrils by time-resolved measurements of protein-bound and free Pi. Barman T; Brune M; Lionne C; Piroddi N; Poggesi C; Stehle R; Tesi C; Travers F; Webb MR Biophys J; 1998 Jun; 74(6):3120-30. PubMed ID: 9635765 [TBL] [Abstract][Full Text] [Related]
2. Does phosphate release limit the ATPases of soleus myofibrils? Evidence that (A)M. ADP.Pi states predominate on the cross-bridge cycle. Iorga B; Candau R; Travers F; Barman T; Lionne C J Muscle Res Cell Motil; 2004; 25(4-5):367-78. PubMed ID: 15548866 [TBL] [Abstract][Full Text] [Related]
3. Mechanochemical coupling in muscle: attempts to measure simultaneously shortening and ATPase rates in myofibrils. Lionne C; Travers F; Barman T Biophys J; 1996 Feb; 70(2):887-95. PubMed ID: 8789106 [TBL] [Abstract][Full Text] [Related]
4. Evidence that phosphate release is the rate-limiting step on the overall ATPase of psoas myofibrils prevented from shortening by chemical cross-linking. Lionne C; Iorga B; Candau R; Piroddi N; Webb MR; Belus A; Travers F; Barman T Biochemistry; 2002 Nov; 41(44):13297-308. PubMed ID: 12403632 [TBL] [Abstract][Full Text] [Related]
5. The efficiency of contraction in rabbit skeletal muscle fibres, determined from the rate of release of inorganic phosphate. He ZH; Chillingworth RK; Brune M; Corrie JE; Webb MR; Ferenczi MA J Physiol; 1999 Jun; 517 ( Pt 3)(Pt 3):839-54. PubMed ID: 10358123 [TBL] [Abstract][Full Text] [Related]
6. Modulation by substrate concentration of maximal shortening velocity and isometric force in single myofibrils from frog and rabbit fast skeletal muscle. Tesi C; Colomo F; Nencini S; Piroddi N; Poggesi C J Physiol; 1999 May; 516 ( Pt 3)(Pt 3):847-53. PubMed ID: 10200430 [TBL] [Abstract][Full Text] [Related]
7. ATPase kinetics on activation of rabbit and frog permeabilized isometric muscle fibres: a real time phosphate assay. He ZH; Chillingworth RK; Brune M; Corrie JE; Trentham DR; Webb MR; Ferenczi MA J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):125-48. PubMed ID: 9174999 [TBL] [Abstract][Full Text] [Related]
8. Cryoenzymic studies on an organized system: myofibrillar ATPases and shortening. Lionne C; Stehle R; Travers F; Barman T Biochemistry; 1999 Jun; 38(26):8512-20. PubMed ID: 10387098 [TBL] [Abstract][Full Text] [Related]
9. At physiological temperatures the ATPase rates of shortening soleus and psoas myofibrils are similar. Candau R; Iorga B; Travers F; Barman T; Lionne C Biophys J; 2003 Nov; 85(5):3132-41. PubMed ID: 14581213 [TBL] [Abstract][Full Text] [Related]
10. Early steps of the Mg(2+)-ATPase of relaxed myofibrils. A comparison with Ca(2+)-activated myofibrils and myosin subfragment 1. Herrmann C; Houadjeto M; Travers F; Barman T Biochemistry; 1992 Sep; 31(34):8036-42. PubMed ID: 1387323 [TBL] [Abstract][Full Text] [Related]
11. Myofibrillar ATPase activity and mechanical performance of skinned fibres from rabbit psoas muscle. Potma EJ; Stienen GJ; Barends JP; Elzinga G J Physiol; 1994 Jan; 474(2):303-17. PubMed ID: 8006817 [TBL] [Abstract][Full Text] [Related]
12. Increase in ATP consumption during shortening in skinned fibres from rabbit psoas muscle: effects of inorganic phosphate. Potma EJ; Stienen GJ J Physiol; 1996 Oct; 496 ( Pt 1)(Pt 1):1-12. PubMed ID: 8910191 [TBL] [Abstract][Full Text] [Related]
13. Kinetics of adenosine triphosphate hydrolysis by shortening myofibrils from rabbit psoas muscle. Ohno T; Kodama T J Physiol; 1991 Sep; 441():685-702. PubMed ID: 1816389 [TBL] [Abstract][Full Text] [Related]
14. Maximum velocity of shortening related to myosin isoform composition in frog skeletal muscle fibres. Edman KA; Reggiani C; Schiaffino S; te Kronnie G J Physiol; 1988 Jan; 395():679-94. PubMed ID: 2970539 [TBL] [Abstract][Full Text] [Related]
15. Effects of pH on myofibrillar ATPase activity in fast and slow skeletal muscle fibers of the rabbit. Potma EJ; van Graas IA; Stienen GJ Biophys J; 1994 Dec; 67(6):2404-10. PubMed ID: 7696480 [TBL] [Abstract][Full Text] [Related]
16. Titin-based contribution to shortening velocity of rabbit skeletal myofibrils. Minajeva A; Neagoe C; Kulke M; Linke WA J Physiol; 2002 Apr; 540(Pt 1):177-88. PubMed ID: 11927678 [TBL] [Abstract][Full Text] [Related]
17. A structural and kinetic study on myofibrils prevented from shortening by chemical cross-linking. Herrmann C; Sleep J; Chaussepied P; Travers F; Barman T Biochemistry; 1993 Jul; 32(28):7255-63. PubMed ID: 8343514 [TBL] [Abstract][Full Text] [Related]
18. Time-resolved measurements of phosphate release by cycling cross-bridges in portal vein smooth muscle. He ZH; Ferenczi MA; Brune M; Trentham DR; Webb MR; Somlyo AP; Somlyo AV Biophys J; 1998 Dec; 75(6):3031-40. PubMed ID: 9826623 [TBL] [Abstract][Full Text] [Related]
19. Time resolved measurements show that phosphate release is the rate limiting step on myofibrillar ATPases. Lionne C; Brune M; Webb MR; Travers F; Barman T FEBS Lett; 1995 May; 364(1):59-62. PubMed ID: 7750544 [TBL] [Abstract][Full Text] [Related]
20. Approximating the isometric force-calcium relation of intact frog muscle using skinned fibers. Maughan DW; Molloy JE; Brotto MA; Godt RE Biophys J; 1995 Oct; 69(4):1484-90. PubMed ID: 8534819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]