BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 9636030)

  • 21. Enzyme dynamics along the reaction coordinate: critical role of a conserved residue.
    Kovrigin EL; Loria JP
    Biochemistry; 2006 Feb; 45(8):2636-47. PubMed ID: 16489757
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A single amino acid substitution changes ribonuclease 4 from a uridine-specific to a cytidine-specific enzyme.
    Hofsteenge J; Moldow C; Vicentini AM; Zelenko O; Jarai-Kote Z; Neumann U
    Biochemistry; 1998 Jun; 37(26):9250-7. PubMed ID: 9649305
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role for an invariant aspartic acid in hypoxanthine phosphoribosyltransferases is examined using saturation mutagenesis, functional analysis, and X-ray crystallography.
    Canyuk B; Focia PJ; Eakin AE
    Biochemistry; 2001 Mar; 40(9):2754-65. PubMed ID: 11258886
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of the Arg-Asp-His catalytic triad in enzymatic cleavage of the phosphodiester bond.
    Kubiak RJ; Yue X; Hondal RJ; Mihai C; Tsai MD; Bruzik KS
    Biochemistry; 2001 May; 40(18):5422-32. PubMed ID: 11331006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Asp-99 donates a hydrogen bond not to Tyr-14 but to the steroid directly in the catalytic mechanism of Delta 5-3-ketosteroid isomerase from Pseudomonas putida biotype B.
    Choi G; Ha NC; Kim SW; Kim DH; Park S; Oh BH; Choi KY
    Biochemistry; 2000 Feb; 39(5):903-9. PubMed ID: 10653633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new remote subsite in ribonuclease A.
    Fisher BM; Grilley JE; Raines RT
    J Biol Chem; 1998 Dec; 273(51):34134-8. PubMed ID: 9852072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ground state destabilization from a positioned general base in the ketosteroid isomerase active site.
    Ruben EA; Schwans JP; Sonnett M; Natarajan A; Gonzalez A; Tsai Y; Herschlag D
    Biochemistry; 2013 Feb; 52(6):1074-81. PubMed ID: 23311398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Site-directed mutagenesis of bovine pancreatic ribonuclease: lysine-41 and aspartate-121.
    Trautwein K; Holliger P; Stackhouse J; Benner SA
    FEBS Lett; 1991 Apr; 281(1-2):275-7. PubMed ID: 1901803
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalytic mechanism of S-adenosylhomocysteine hydrolase. Site-directed mutagenesis of Asp-130, Lys-185, Asp-189, and Asn-190.
    Takata Y; Yamada T; Huang Y; Komoto J; Gomi T; Ogawa H; Fujioka M; Takusagawa F
    J Biol Chem; 2002 Jun; 277(25):22670-6. PubMed ID: 11927587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calcium binding to the class I alpha-1,2-mannosidase from Saccharomyces cerevisiae occurs outside the EF hand motif.
    Lipari F; Herscovics A
    Biochemistry; 1999 Jan; 38(3):1111-8. PubMed ID: 9894008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.
    Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP
    J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The catalytic role of the active site aspartic acid in serine proteases.
    Craik CS; Roczniak S; Largman C; Rutter WJ
    Science; 1987 Aug; 237(4817):909-13. PubMed ID: 3303334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of the reaction catalyzed by isoaspartyl dipeptidase from Escherichia coli.
    Martí-Arbona R; Fresquet V; Thoden JB; Davis ML; Holden HM; Raushel FM
    Biochemistry; 2005 May; 44(19):7115-24. PubMed ID: 15882050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asparagine 23 and aspartate 305 are essential residues in the active site of UDP-N-acetylglucosamine enolpyruvyl transferase from Enterobacter cloacae.
    Samland AK; Etezady-Esfarjani T; Amrhein N; Macheroux P
    Biochemistry; 2001 Feb; 40(6):1550-9. PubMed ID: 11327813
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of a tyrosine side chain to ribonuclease A catalysis and stability.
    Eberhardt ES; Wittmayer PK; Templer BM; Raines RT
    Protein Sci; 1996 Aug; 5(8):1697-703. PubMed ID: 8844858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational strictness required for maximum activity and stability of bovine pancreatic ribonuclease A as revealed by crystallographic study of three Phe120 mutants at 1.4 A resolution.
    Chatani E; Hayashi R; Moriyama H; Ueki T
    Protein Sci; 2002 Jan; 11(1):72-81. PubMed ID: 11742124
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Excavating an active site: the nucleobase specificity of ribonuclease A.
    Kelemen BR; Schultz LW; Sweeney RY; Raines RT
    Biochemistry; 2000 Nov; 39(47):14487-94. PubMed ID: 11087402
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the D270N mutant.
    Schafer SL; Barrett WC; Kallarakal AT; Mitra B; Kozarich JW; Gerlt JA; Clifton JG; Petsko GA; Kenyon GL
    Biochemistry; 1996 May; 35(18):5662-9. PubMed ID: 8639525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of disulfide bonds to the conformational stability and catalytic activity of ribonuclease A.
    Klink TA; Woycechowsky KJ; Taylor KM; Raines RT
    Eur J Biochem; 2000 Jan; 267(2):566-72. PubMed ID: 10632727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering of the pH-dependence of thermolysin activity as examined by site-directed mutagenesis of Asn112 located at the active site of thermolysin.
    Kusano M; Yasukawa K; Hashida Y; Inouye K
    J Biochem; 2006 Jun; 139(6):1017-23. PubMed ID: 16788052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.