These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 9636062)
1. Secondary tritium and solvent deuterium isotope effects as a probe of the reaction catalyzed by porcine recombinant dihydropyrimidine dehydrogenase. Rosenbaum K; Jahnke K; Schnackerz KD; Cook PF Biochemistry; 1998 Jun; 37(25):9156-9. PubMed ID: 9636062 [TBL] [Abstract][Full Text] [Related]
2. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes. Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876 [TBL] [Abstract][Full Text] [Related]
3. Beta-secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C beta-lactamase. Adediran SA; Pratt RF Biochemistry; 1999 Feb; 38(5):1469-77. PubMed ID: 9931012 [TBL] [Abstract][Full Text] [Related]
4. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase. Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966 [TBL] [Abstract][Full Text] [Related]
5. Multiple isotope effects as a probe of proton and hydride transfer in the 6-phosphogluconate dehydrogenase reaction. Hwang CC; Cook PF Biochemistry; 1998 Nov; 37(45):15698-702. PubMed ID: 9843374 [TBL] [Abstract][Full Text] [Related]
6. Dihydropyrimidine dehydrogenase. Kinetic mechanism for reduction of uracil by NADPH. Porter DJ; Spector T J Biol Chem; 1993 Sep; 268(26):19321-7. PubMed ID: 8366081 [TBL] [Abstract][Full Text] [Related]
7. Hydride reduction of NAD+ analogues by isopropyl alcohol: kinetics, deuterium isotope effects and mechanism. Lu Y; Qu F; Moore B; Endicott D; Kuester W J Org Chem; 2008 Jul; 73(13):4763-70. PubMed ID: 18543993 [TBL] [Abstract][Full Text] [Related]
8. Acid base catalytic mechanism of the dihydropyrimidine dehydrogenase from pH studies. Podschun B; Jahnke K; Schnackerz KD; Cook PF J Biol Chem; 1993 Feb; 268(5):3407-13. PubMed ID: 8429016 [TBL] [Abstract][Full Text] [Related]
11. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. Su Q; Klinman JP Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824 [TBL] [Abstract][Full Text] [Related]
12. Nature of oxygen activation in glucose oxidase from Aspergillus niger: the importance of electrostatic stabilization in superoxide formation. Su Q; Klinman JP Biochemistry; 1999 Jun; 38(26):8572-81. PubMed ID: 10387105 [TBL] [Abstract][Full Text] [Related]
13. Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein (ACP) reductase: kinetic and chemical mechanisms. Silva RG; de Carvalho LP; Blanchard JS; Santos DS; Basso LA Biochemistry; 2006 Oct; 45(43):13064-73. PubMed ID: 17059223 [TBL] [Abstract][Full Text] [Related]
14. Secondary H/T and D/T isotope effects in enzymatic enolization reactions. Coupled motion and tunneling in the triosephosphate isomerase reaction. Alston WC; Kanska M; Murray CJ Biochemistry; 1996 Oct; 35(39):12873-81. PubMed ID: 8841131 [TBL] [Abstract][Full Text] [Related]
15. Role of lysine 240 in the mechanism of yeast pyruvate kinase catalysis. Bollenbach TJ; Mesecar AD; Nowak T Biochemistry; 1999 Jul; 38(28):9137-45. PubMed ID: 10413488 [TBL] [Abstract][Full Text] [Related]
16. Kinetic and chemical mechanisms of shikimate dehydrogenase from Mycobacterium tuberculosis. Fonseca IO; Silva RG; Fernandes CL; de Souza ON; Basso LA; Santos DS Arch Biochem Biophys; 2007 Jan; 457(2):123-33. PubMed ID: 17178095 [TBL] [Abstract][Full Text] [Related]
17. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens. Slatner M; Nidetzky B; Kulbe KD Biochemistry; 1999 Aug; 38(32):10489-98. PubMed ID: 10441145 [TBL] [Abstract][Full Text] [Related]
18. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects. Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960 [TBL] [Abstract][Full Text] [Related]
19. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase. Zheng R; Blanchard JS Biochemistry; 2003 Sep; 42(38):11289-96. PubMed ID: 14503879 [TBL] [Abstract][Full Text] [Related]
20. Kinetic deuterium isotope effects for 7-alkoxycoumarin O-dealkylation reactions catalyzed by human cytochromes P450 and in liver microsomes. Rate-limiting C-H bond breaking in cytochrome P450 1A2 substrate oxidation. Kim KH; Isin EM; Yun CH; Kim DH; Guengerich FP FEBS J; 2006 May; 273(10):2223-31. PubMed ID: 16649998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]