BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 9636097)

  • 1. Effect of bicuculline on thalamic activity: a direct blockade of IAHP in reticularis neurons.
    Debarbieux F; Brunton J; Charpak S
    J Neurophysiol; 1998 Jun; 79(6):2911-8. PubMed ID: 9636097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic roles of GABAA receptors and SK channels in regulating thalamocortical oscillations.
    Kleiman-Weiner M; Beenhakker MP; Segal WA; Huguenard JR
    J Neurophysiol; 2009 Jul; 102(1):203-13. PubMed ID: 19386752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a non-GABAergic action of quaternary salts of bicuculline on dopaminergic neurones.
    Seutin V; Scuvée-Moreau J; Dresse A
    Neuropharmacology; 1997; 36(11-12):1653-7. PubMed ID: 9517436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bicuculline methiodide potentiates NMDA-dependent burst firing in rat dopamine neurons by blocking apamin-sensitive Ca2+-activated K+ currents.
    Johnson SW; Seutin V
    Neurosci Lett; 1997 Aug; 231(1):13-6. PubMed ID: 9280156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices.
    Destexhe A; Bal T; McCormick DA; Sejnowski TJ
    J Neurophysiol; 1996 Sep; 76(3):2049-70. PubMed ID: 8890314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The functional role of a bicuculline-sensitive Ca2+-activated K+ current in rat medial preoptic neurons.
    Johansson S; Druzin M; Haage D; Wang MD
    J Physiol; 2001 May; 532(Pt 3):625-35. PubMed ID: 11313434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bicuculline block of small-conductance calcium-activated potassium channels.
    Khawaled R; Bruening-Wright A; Adelman JP; Maylie J
    Pflugers Arch; 1999 Aug; 438(3):314-21. PubMed ID: 10398861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABAA receptor function in developing rat thalamic reticular neurons: whole cell recordings of GABA-mediated currents and modulation by clonazepam.
    Gibbs JW; Schroder GB; Coulter DA
    J Neurophysiol; 1996 Oct; 76(4):2568-79. PubMed ID: 8899628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propofol block of I(h) contributes to the suppression of neuronal excitability and rhythmic burst firing in thalamocortical neurons.
    Ying SW; Abbas SY; Harrison NL; Goldstein PA
    Eur J Neurosci; 2006 Jan; 23(2):465-80. PubMed ID: 16420453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suprachiasmatic nucleus communicates with anterior thalamic paraventricular nucleus neurons via rapid glutamatergic and gabaergic neurotransmission: state-dependent response patterns observed in vitro.
    Zhang L; Kolaj M; Renaud LP
    Neuroscience; 2006 Sep; 141(4):2059-66. PubMed ID: 16797851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous apamin-sensitive hyperpolarizations in dopaminergic neurons of neonatal rats.
    Seutin V; Massotte L; Scuvée-Moreau J; Dresse A
    J Neurophysiol; 1998 Dec; 80(6):3361-4. PubMed ID: 9862933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propofol-block of SK channels in reticular thalamic neurons enhances GABAergic inhibition in relay neurons.
    Ying SW; Goldstein PA
    J Neurophysiol; 2005 Apr; 93(4):1935-48. PubMed ID: 15563549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methyl-laudanosine: a new pharmacological tool to investigate the function of small-conductance Ca(2+)-activated K(+) channels.
    Scuvee-Moreau J; Liegeois JF; Massotte L; Seutin V
    J Pharmacol Exp Ther; 2002 Sep; 302(3):1176-83. PubMed ID: 12183678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pentobarbital modulates intrinsic and GABA-receptor conductances in thalamocortical inhibition.
    Wan X; Mathers DA; Puil E
    Neuroscience; 2003; 121(4):947-58. PubMed ID: 14580945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons.
    Komendantov AO; Komendantova OG; Johnson SW; Canavier CC
    J Neurophysiol; 2004 Jan; 91(1):346-57. PubMed ID: 13679411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory postsynaptic potentials evoked in thalamic neurons by stimulation of the reticularis nucleus evoke slow spikes in isolated rat brain slices--I.
    Thomson AM
    Neuroscience; 1988 May; 25(2):491-502. PubMed ID: 3399055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 5-Hydroxytryptamine action in the rat olfactory bulb: in vitro electrophysiological patch-clamp recordings of juxtaglomerular and mitral cells.
    Hardy A; Palouzier-Paulignan B; Duchamp A; Royet JP; Duchamp-Viret P
    Neuroscience; 2005; 131(3):717-31. PubMed ID: 15730876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of ih contributes to propofol-induced inhibition of mouse cortical pyramidal neurons.
    Chen X; Shu S; Bayliss DA
    J Neurophysiol; 2005 Dec; 94(6):3872-83. PubMed ID: 16093340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of an apamin-sensitive potassium current in suprachiasmatic nucleus neurons.
    Teshima K; Kim SH; Allen CN
    Neuroscience; 2003; 120(1):65-73. PubMed ID: 12849741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carrier-mediated GABA release activates GABA receptors on hippocampal neurons.
    Gaspary HL; Wang W; Richerson GB
    J Neurophysiol; 1998 Jul; 80(1):270-81. PubMed ID: 9658049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.