These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
47. Cooperative interactions in enzymes: the binding of 1, N6-etheno-ATP to Aztobacter vinelandii nitrogenase. Van Rossen AR; Peeters JF; Heremans KA Arch Int Physiol Biochim; 1973 Dec; 81(5):987. PubMed ID: 4133565 [No Abstract] [Full Text] [Related]
48. Use of Pankhurst tubes to assay acetylene reduction by facultative and anaerobic nitrogen-fixing bacteria. Campbell NE; Evans HJ Can J Microbiol; 1969 Nov; 15(11):1342-3. PubMed ID: 4902108 [No Abstract] [Full Text] [Related]
49. Nitrogen fixation (acetylene reduction) associated with roots of winter wheat and sorghum in Nebraska. Pedersen WL; Chakrabarty K; Klucas RV; Vidaver AK Appl Environ Microbiol; 1978 Jan; 35(1):129-35. PubMed ID: 623458 [TBL] [Abstract][Full Text] [Related]
50. Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. Offre P; Prosser JI; Nicol GW FEMS Microbiol Ecol; 2009 Oct; 70(1):99-108. PubMed ID: 19656195 [TBL] [Abstract][Full Text] [Related]
51. Investigation of the mechanisms underlying the high acetylene-reducing activity exhibited by the soil bacterial community from BC2 horizon in the permafrost zone of the East Siberian larch forest bed. Hara S; Desyatkin RV; Hashidoko Y J Appl Microbiol; 2014 Apr; 116(4):865-76. PubMed ID: 24456192 [TBL] [Abstract][Full Text] [Related]
52. The effect of nickel on the growth, photosynthesis, and nitrogenase activity of Anabaena inaequalis. Stratton GW; Corke CT Can J Microbiol; 1979 Sep; 25(9):1094-9. PubMed ID: 120221 [TBL] [Abstract][Full Text] [Related]
53. Effect of mercuric ion on the growth, photosynthesis, and nitrogenase activity of Anabaena inaequalis. Stratton GW; Huber AL; Corke CT Appl Environ Microbiol; 1979 Sep; 38(3):537-43. PubMed ID: 119487 [TBL] [Abstract][Full Text] [Related]
54. Nitrogenase in the archaebacterium Methanosarcina barkeri 227. Lobo AL; Zinder SH J Bacteriol; 1990 Dec; 172(12):6789-96. PubMed ID: 2254255 [TBL] [Abstract][Full Text] [Related]
55. Nitrogen fixation in the Rhode River estuary of Chesapeake Bay. Marsho TV; Burchard RP; Fleming R Can J Microbiol; 1975 Sep; 21(9):1348-56. PubMed ID: 810234 [TBL] [Abstract][Full Text] [Related]
56. Ethylene production by bacteria. Primrose SB; Dilworth MJ J Gen Microbiol; 1976 Mar; 93(1):177-81. PubMed ID: 772166 [No Abstract] [Full Text] [Related]
57. [Possibilities of the method of "gas exchange" for detecting extraterrestrial life--identification of nitrogen-fixing microorganisms]. Fedorova RI; Milekhina EI; Il'iukhina NI Izv Akad Nauk SSSR Biol; 1973; 6():797-806. PubMed ID: 4779561 [No Abstract] [Full Text] [Related]
58. The [4Fe-4S] cluster domain of the nitrogenase iron protein facilitates conformational changes required for the cooperative binding of two nucleotides. Ryle MJ; Seefeldt LC Biochemistry; 1996 Dec; 35(49):15654-62. PubMed ID: 8961928 [TBL] [Abstract][Full Text] [Related]
59. Acetylene reduction by the iron-molybdenum cofactor from nitrogenase. Shah VK; Chisnell JR; Brill WJ Biochem Biophys Res Commun; 1978 Mar; 81(1):232-6. PubMed ID: 656098 [No Abstract] [Full Text] [Related]
60. The chemistry and biochemistry of nitrogen. Pratt JM Horiz Biochem Biophys; 1978; 5():119-60. PubMed ID: 98424 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]