These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 9636717)
1. A graph-theoretic algorithm for comparative modeling of protein structure. Samudrala R; Moult J J Mol Biol; 1998 May; 279(1):287-302. PubMed ID: 9636717 [TBL] [Abstract][Full Text] [Related]
2. A graph-theoretic approach to the identification of three-dimensional patterns of amino acid side-chains in protein structures. Artymiuk PJ; Poirrette AR; Grindley HM; Rice DW; Willett P J Mol Biol; 1994 Oct; 243(2):327-44. PubMed ID: 7932758 [TBL] [Abstract][Full Text] [Related]
3. Heuristics for chemical compound matching. Hattori M; Okuno Y; Goto S; Kanehisa M Genome Inform; 2003; 14():144-53. PubMed ID: 15706529 [TBL] [Abstract][Full Text] [Related]
4. Identification of side-chain clusters in protein structures by a graph spectral method. Kannan N; Vishveshwara S J Mol Biol; 1999 Sep; 292(2):441-64. PubMed ID: 10493887 [TBL] [Abstract][Full Text] [Related]
5. Interaction graph mining for protein complexes using local clique merging. Li XL; Tan SH; Foo CS; Ng SK Genome Inform; 2005; 16(2):260-9. PubMed ID: 16901108 [TBL] [Abstract][Full Text] [Related]
6. An efficient randomized algorithm for contact-based NMR backbone resonance assignment. Kamisetty H; Bailey-Kellogg C; Pandurangan G Bioinformatics; 2006 Jan; 22(2):172-80. PubMed ID: 16287932 [TBL] [Abstract][Full Text] [Related]
7. A geometrical constraint approach for reproducing the native backbone conformation of a protein. Saitoh S; Nakai T; Nishikawa K Proteins; 1993 Feb; 15(2):191-204. PubMed ID: 8441754 [TBL] [Abstract][Full Text] [Related]
8. Searching for patterns of amino acids in 3D protein structures. Spriggs RV; Artymiuk PJ; Willett P J Chem Inf Comput Sci; 2003; 43(2):412-21. PubMed ID: 12653503 [TBL] [Abstract][Full Text] [Related]
9. An impatient evolutionary algorithm with probabilistic tabu search for unified solution of some NP-hard problems in graph and set theory via clique finding. Guturu P; Dantu R IEEE Trans Syst Man Cybern B Cybern; 2008 Jun; 38(3):645-66. PubMed ID: 18558530 [TBL] [Abstract][Full Text] [Related]
10. A consistent set of statistical potentials for quantifying local side-chain and backbone interactions. Fang Q; Shortle D Proteins; 2005 Jul; 60(1):90-6. PubMed ID: 15852305 [TBL] [Abstract][Full Text] [Related]
11. A graph theoretic approach to protein structure selection. Vassura M; Margara L; Fariselli P; Casadio R Artif Intell Med; 2009; 45(2-3):229-37. PubMed ID: 18786818 [TBL] [Abstract][Full Text] [Related]
12. Multiple methods for protein side chain packing using maximum weight cliques. Brown JB; Dukka Bahadur KC; Tomita E; Akutsu T Genome Inform; 2006; 17(1):3-12. PubMed ID: 17503351 [TBL] [Abstract][Full Text] [Related]
13. Role of main-chain electrostatics, hydrophobic effect and side-chain conformational entropy in determining the secondary structure of proteins. Avbelj F; Fele L J Mol Biol; 1998 Jun; 279(3):665-84. PubMed ID: 9641985 [TBL] [Abstract][Full Text] [Related]
14. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. Word JM; Lovell SC; Richardson JS; Richardson DC J Mol Biol; 1999 Jan; 285(4):1735-47. PubMed ID: 9917408 [TBL] [Abstract][Full Text] [Related]
15. Residue-rotamer-reduction algorithm for the protein side-chain conformation problem. Xie W; Sahinidis NV Bioinformatics; 2006 Jan; 22(2):188-94. PubMed ID: 16278239 [TBL] [Abstract][Full Text] [Related]
16. Modeling side-chains using molecular dynamics improve recognition of binding region in CAPRI targets. Camacho CJ Proteins; 2005 Aug; 60(2):245-51. PubMed ID: 15981253 [TBL] [Abstract][Full Text] [Related]
17. Dependency between consecutive local conformations helps assemble protein structures from secondary structures using Go potential and greedy algorithm. Tuffery P; Derreumaux P Proteins; 2005 Dec; 61(4):732-40. PubMed ID: 16231300 [TBL] [Abstract][Full Text] [Related]
18. LOOPER: a molecular mechanics-based algorithm for protein loop prediction. Spassov VZ; Flook PK; Yan L Protein Eng Des Sel; 2008 Feb; 21(2):91-100. PubMed ID: 18194981 [TBL] [Abstract][Full Text] [Related]
19. A method for hierarchical comparative analysis of crystal structures. Blatov VA Acta Crystallogr A; 2006 Sep; 62(Pt 5):356-64. PubMed ID: 16926484 [TBL] [Abstract][Full Text] [Related]
20. Fitting a geometric graph to a protein-protein interaction network. Higham DJ; Rasajski M; Przulj N Bioinformatics; 2008 Apr; 24(8):1093-9. PubMed ID: 18344248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]