BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 9637031)

  • 1. Observing middle and inner ear mechanics with novel intracochlear pressure sensors.
    Olson ES
    J Acoust Soc Am; 1998 Jun; 103(6):3445-63. PubMed ID: 9637031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracochlear pressure measurements related to cochlear tuning.
    Olson ES
    J Acoust Soc Am; 2001 Jul; 110(1):349-67. PubMed ID: 11508960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Middle ear forward and reverse transmission in gerbil.
    Dong W; Olson ES
    J Neurophysiol; 2006 May; 95(5):2951-61. PubMed ID: 16481455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure-induced basilar membrane position shifts and the stimulus-evoked potentials in the low-frequency region of the guinea pig cochlea.
    Fridberger A; van Maarseveen JT; Scarfone E; Ulfendahl M; Flock B; Flock A
    Acta Physiol Scand; 1997 Oct; 161(2):239-52. PubMed ID: 9366967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound pressures in the basal turn of the cat cochlea.
    Nedzelnitsky V
    J Acoust Soc Am; 1980 Dec; 68(6):1676-89. PubMed ID: 7462467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracochlear sound pressure measurements in guinea pigs.
    Dancer A; Franke R
    Hear Res; 1980 Jun; 2(3-4):191-205. PubMed ID: 7410227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the characteristics of two types of pressure waves in the cochlea: theoretical considerations.
    Andoh M; Wada H
    J Acoust Soc Am; 2004 Jul; 116(1):417-25. PubMed ID: 15296002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subharmonic distortion in ear canal pressure and intracochlear pressure and motion.
    Huang S; Dong W; Olson ES
    J Assoc Res Otolaryngol; 2012 Aug; 13(4):461-71. PubMed ID: 22526734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous measurements of ossicular velocity and intracochlear pressure leading to the cochlear input impedance in gerbil.
    de la Rochefoucauld O; Decraemer WF; Khanna SM; Olson ES
    J Assoc Res Otolaryngol; 2008 Jun; 9(2):161-77. PubMed ID: 18459001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential intracochlear sound pressure measurements in normal human temporal bones.
    Nakajima HH; Dong W; Olson ES; Merchant SN; Ravicz ME; Rosowski JJ
    J Assoc Res Otolaryngol; 2009 Mar; 10(1):23-36. PubMed ID: 19067078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anatomical correlates of the passive properties underlying the developmental shift in the frequency map of the mammalian cochlea.
    Schweitzer L; Lutz C; Hobbs M; Weaver SP
    Hear Res; 1996 Aug; 97(1-2):84-94. PubMed ID: 8844189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo impedance of the gerbil cochlear partition at auditory frequencies.
    Dong W; Olson ES
    Biophys J; 2009 Sep; 97(5):1233-43. PubMed ID: 19720011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forward and Reverse Middle Ear Transmission in Gerbil with a Normal or Spontaneously Healed Tympanic Membrane.
    Lin X; Meenderink SWF; Stomackin G; Jung TT; Martin GK; Dong W
    J Assoc Res Otolaryngol; 2021 Jun; 22(3):261-274. PubMed ID: 33591494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On cochlear impedances and the miscomputation of power gain.
    Shera CA; Olson ES; Guinan JJ
    J Assoc Res Otolaryngol; 2011 Dec; 12(6):671-6. PubMed ID: 21947765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes.
    Cormack J; Liu Y; Nam JH; Gracewski SM
    J Acoust Soc Am; 2015 Mar; 137(3):1117-25. PubMed ID: 25786927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Middle Ear Actuator Performance Determined From Intracochlear Pressure Measurements in a Single Cochlear Scala.
    Raufer S; Gamm UA; Grossöhmichen M; Lenarz T; Maier H
    Otol Neurotol; 2021 Jan; 42(1):e86-e93. PubMed ID: 33044336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay.
    Puria S; Allen JB
    J Acoust Soc Am; 1998 Dec; 104(6):3463-81. PubMed ID: 9857506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Middle-ear pressure gain and cochlear partition differential pressure in chinchilla.
    Ravicz ME; Slama MC; Rosowski JJ
    Hear Res; 2010 May; 263(1-2):16-25. PubMed ID: 19945521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase of neural excitation relative to basilar membrane motion in the organ of Corti: theoretical considerations.
    Andoh M; Nakajima C; Wada H
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1554-65. PubMed ID: 16240816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.