These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 9637050)

  • 1. Sinuous instability of a planar air jet: propagation parameters and acoustic excitation.
    Nolle AW
    J Acoust Soc Am; 1998 Jun; 103(6):3690-705. PubMed ID: 9637050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow simulations on an organ pipe foot model.
    Vaik I; Paál G
    J Acoust Soc Am; 2013 Feb; 133(2):1102-10. PubMed ID: 23363125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-destabilizing mechanism of a laminar inviscid liquid jet issuing from a circular nozzle.
    Umemura A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046307. PubMed ID: 21599295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uniformly valid solution for acoustic propagation in weakly tapered circular waveguides: liquid jet example.
    Lonzaga JB; Thiessen DB; Marston PL
    J Acoust Soc Am; 2008 Jul; 124(1):151-60. PubMed ID: 18646962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid jet response to internal modulated ultrasonic radiation pressure and stimulated drop production.
    Lonzaga JB; Osterhoudt CF; Thiessen DB; Marston PL
    J Acoust Soc Am; 2007 Jun; 121(6):3323-30. PubMed ID: 17552684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Causality and the velocity of acoustic signals in bubbly liquids.
    Orris GJ; Dacol DK; Nicholas M
    J Acoust Soc Am; 2007 Jun; 121(6):3349-62. PubMed ID: 17552687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The connection between sound production and jet structure of the supersonic impinging jet.
    Henderson B
    J Acoust Soc Am; 2002 Feb; 111(2):735-47. PubMed ID: 11863175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near- to far-field characteristics of acoustic radiation through plug flow jets.
    Gabard G
    J Acoust Soc Am; 2008 Nov; 124(5):2755-66. PubMed ID: 19045763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency effects on the scale and behavior of acoustic streaming.
    Dentry MB; Yeo LY; Friend JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013203. PubMed ID: 24580352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the forming mechanism of the cleaning airflow of pulse-jet fabric filters.
    Cai J; Hao W; Zhang C; Yu J; Wang T
    J Air Waste Manag Assoc; 2017 Dec; 67(12):1273-1287. PubMed ID: 28379118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental jet velocity and edge tone investigations on a foot model of an organ pipe.
    Ausserlechner HJ; Trommer T; Angster J; Miklós A
    J Acoust Soc Am; 2009 Aug; 126(2):878-86. PubMed ID: 19640052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-field shock formation in noise propagation from a high-power jet aircraft.
    Gee KL; Neilsen TB; Downing JM; James MM; McKinley RL; McKinley RC; Wall AT
    J Acoust Soc Am; 2013 Feb; 133(2):EL88-93. PubMed ID: 23363199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise prediction of a subsonic turbulent round jet using the lattice-Boltzmann method.
    Lew PT; Mongeau L; Lyrintzis A
    J Acoust Soc Am; 2010 Sep; 128(3):1118-27. PubMed ID: 20815448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear wave velocity and attenuation in the upper layer of ocean bottoms from long-range acoustic field measurements.
    Zhou JX; Zhang XZ
    J Acoust Soc Am; 2012 Dec; 132(6):3698-705. PubMed ID: 23231101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound wave propagation on the human skull surface with bone conduction stimulation.
    Dobrev I; Sim JH; Stenfelt S; Ihrle S; Gerig R; Pfiffner F; Eiber A; Huber AM; Röösli C
    Hear Res; 2017 Nov; 355():1-13. PubMed ID: 28964568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional numerical analysis of acoustic energy absorption and generation in an air-jet instrument based on Howe's energy corollary.
    Tabata R; Matsuda R; Koiwaya T; Iwagami S; Midorikawa H; Kobayashi T; Takahashi K
    J Acoust Soc Am; 2021 Jun; 149(6):4000. PubMed ID: 34241485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young's modulus.
    Huang HH; Sun CT
    J Acoust Soc Am; 2012 Oct; 132(4):2887-95. PubMed ID: 23039555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stopped-pipe wind instruments: acoustics of the panpipes.
    Fletcher NH
    J Acoust Soc Am; 2005 Jan; 117(1):370-4. PubMed ID: 15704429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow visualization and acoustic consequences of the air moving through a static model of the human larynx.
    Kucinschi BR; Scherer RC; DeWitt KJ; Ng TT
    J Biomech Eng; 2006 Jun; 128(3):380-90. PubMed ID: 16706587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Similarity spectra analysis of high-performance jet aircraft noise.
    Neilsen TB; Gee KL; Wall AT; James MM
    J Acoust Soc Am; 2013 Apr; 133(4):2116-25. PubMed ID: 23556581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.