BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 9637261)

  • 1. Identification of lysine-238 of Escherichia coli biotin carboxylase as an ATP-binding residue.
    Kazuta Y; Tokunaga E; Aramaki E; Kondo H
    FEBS Lett; 1998 May; 427(3):377-80. PubMed ID: 9637261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations at four active site residues of biotin carboxylase abolish substrate-induced synergism by biotin.
    Blanchard CZ; Lee YM; Frantom PA; Waldrop GL
    Biochemistry; 1999 Mar; 38(11):3393-400. PubMed ID: 10079084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysine 480 is an essential residue in the putative ATP site of lamb kidney (Na,K)-ATPase. Identification of the pyridoxal 5'-diphospho-5'-adenosine and pyridoxal phosphate reactive residue.
    Hinz HR; Kirley TL
    J Biol Chem; 1990 Jun; 265(18):10260-5. PubMed ID: 2162343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ATP binding site on rho protein. Affinity labeling of Lys181 by pyridoxal 5'-diphospho-5'-adenosine.
    Dombroski AJ; LaDine JR; Cross RL; Platt T
    J Biol Chem; 1988 Dec; 263(35):18810-5. PubMed ID: 3143717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The utility of molecular dynamics simulations for understanding site-directed mutagenesis of glycine residues in biotin carboxylase.
    Bordelon T; Nilsson Lill SO; Waldrop GL
    Proteins; 2009 Mar; 74(4):808-19. PubMed ID: 18704941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The C-terminal domain of biotin protein ligase from E. coli is required for catalytic activity.
    Chapman-Smith A; Mulhern TD; Whelan F; Cronan JE; Wallace JC
    Protein Sci; 2001 Dec; 10(12):2608-17. PubMed ID: 11714929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the ATP binding site of Escherichia coli aminoimidazole ribonucleotide synthetase using affinity labeling and site-directed mutagenesis.
    Mueller EJ; Oh S; Kavalerchik E; Kappock TJ; Meyer E; Li C; Ealick SE; Stubbe J
    Biochemistry; 1999 Aug; 38(31):9831-9. PubMed ID: 10433689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyridoxal 5'-diphospho-5'-adenosine binds at a single site on isolated alpha-subunit from Escherichia coli F1-ATPase and specifically reacts with lysine 201.
    Rao R; Cunningham D; Cross RL; Senior AE
    J Biol Chem; 1988 Apr; 263(12):5640-5. PubMed ID: 2895772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do cysteine 230 and lysine 238 of biotin carboxylase play a role in the activation of biotin?
    Levert KL; Lloyd RB; Waldrop GL
    Biochemistry; 2000 Apr; 39(14):4122-8. PubMed ID: 10747803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the ATP binding site on Escherichia coli DNA gyrase. Affinity labeling of Lys-103 and Lys-110 of the B subunit by pyridoxal 5'-diphospho-5'-adenosine.
    Tamura JK; Gellert M
    J Biol Chem; 1990 Dec; 265(34):21342-9. PubMed ID: 2174443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limited proteolysis of Escherichia coli cytidine 5'-triphosphate synthase. Identification of residues required for CTP formation and GTP-dependent activation of glutamine hydrolysis.
    Simard D; Hewitt KA; Lunn F; Iyengar A; Bearne SL
    Eur J Biochem; 2003 May; 270(10):2195-206. PubMed ID: 12752439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Affinity labeling of adenylate kinase with adenosine diphosphopyridoxal. Presence of Lys21 in the ATP-binding site.
    Tagaya M; Yagami T; Fukui T
    J Biol Chem; 1987 Jun; 262(17):8257-61. PubMed ID: 3036805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis of ATP binding residues of biotin carboxylase. Insight into the mechanism of catalysis.
    Sloane V; Blanchard CZ; Guillot F; Waldrop GL
    J Biol Chem; 2001 Jul; 276(27):24991-6. PubMed ID: 11346647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of lysyl residues at the AMP-binding site of biodegradative threonine deaminase from Escherichia coli.
    Hirose K; Kawata Y; Yumoto N; Tokushige M
    J Biochem; 1991 Dec; 110(6):971-5. PubMed ID: 1794987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinity labeling of the two species of Escherichia coli lysyl-tRNA synthetase with adenosine di- and triphosphopyridoxals.
    Hountondji C; Gillet S; Schmitter JM; Fukui T; Blanquet S
    J Biochem; 1994 Sep; 116(3):493-501. PubMed ID: 7852265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of lysine residues 297 and 306 in nucleoside triphosphate regulation of E. coli CTP synthase: inactivation by 2',3'-dialdehyde ATP and mutational analyses.
    MacLeod TJ; Lunn FA; Bearne SL
    Biochim Biophys Acta; 2006 Feb; 1764(2):199-210. PubMed ID: 16427816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labeling of specific lysine residues at the active site of glutamine synthetase.
    Colanduoni J; Villafranca JJ
    J Biol Chem; 1985 Dec; 260(28):15042-50. PubMed ID: 2415512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Affinity labeling of Escherichia coli histidyl-tRNA synthetase with reactive ATP analogues. Identification of labeled amino acid residues by matrix assisted laser desorption-ionization mass spectrometry.
    Gillet S; Hoang CB; Schmitter JM; Fukui T; Blanquet S; Hountondji C
    Eur J Biochem; 1996 Oct; 241(1):133-41. PubMed ID: 8898898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of conserved residues within the carboxy phosphate domain of carbamoyl phosphate synthetase.
    Stapleton MA; Javid-Majd F; Harmon MF; Hanks BA; Grahmann JL; Mullins LS; Raushel FM
    Biochemistry; 1996 Nov; 35(45):14352-61. PubMed ID: 8916922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenosine di-, tri- and tetraphosphopyridoxals modify the same lysyl residue at the ATP-binding site in adenylate kinase.
    Yagami T; Tagaya M; Fukui T
    FEBS Lett; 1988 Mar; 229(2):261-4. PubMed ID: 2831094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.