BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 9637737)

  • 1. The PutA protein of Salmonella typhimurium catalyzes the two steps of proline degradation via a leaky channel.
    Surber MW; Maloy S
    Arch Biochem Biophys; 1998 Jun; 354(2):281-7. PubMed ID: 9637737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavin redox state triggers conformational changes in the PutA protein from Escherichia coli.
    Zhu W; Becker DF
    Biochemistry; 2003 May; 42(18):5469-77. PubMed ID: 12731889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of flavin dehydrogenase compartmentalization: requirements for PutA-membrane association in Salmonella typhimurium.
    Surber MW; Maloy S
    Biochim Biophys Acta; 1999 Sep; 1421(1):5-18. PubMed ID: 10561467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PutA protein, a membrane-associated flavin dehydrogenase, acts as a redox-dependent transcriptional regulator.
    Ostrovsky de Spicer P; Maloy S
    Proc Natl Acad Sci U S A; 1993 May; 90(9):4295-8. PubMed ID: 8483946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the proline-dependent conformational change in the multifunctional PutA flavoprotein by tryptophan fluorescence spectroscopy.
    Zhu W; Becker DF
    Biochemistry; 2005 Sep; 44(37):12297-306. PubMed ID: 16156643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen reactivity of PutA from Helicobacter species and proline-linked oxidative stress.
    Krishnan N; Becker DF
    J Bacteriol; 2006 Feb; 188(4):1227-35. PubMed ID: 16452403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of PutA-membrane associations by flavin adenine dinucleotide reduction.
    Zhang W; Zhou Y; Becker DF
    Biochemistry; 2004 Oct; 43(41):13165-74. PubMed ID: 15476410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA).
    Moxley MA; Sanyal N; Krishnan N; Tanner JJ; Becker DF
    J Biol Chem; 2014 Feb; 289(6):3639-51. PubMed ID: 24352662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence analysis identifies the proline dehydrogenase and delta 1-pyrroline-5-carboxylate dehydrogenase domains of the multifunctional Escherichia coli PutA protein.
    Ling M; Allen SW; Wood JM
    J Mol Biol; 1994 Nov; 243(5):950-6. PubMed ID: 7966312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proline dehydrogenase activity of the transcriptional repressor PutA is required for induction of the put operon by proline.
    Muro-Pastor AM; Maloy S
    J Biol Chem; 1995 Apr; 270(17):9819-27. PubMed ID: 7730362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor.
    Krishnan N; Becker DF
    Biochemistry; 2005 Jun; 44(25):9130-9. PubMed ID: 15966737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of gene expression by repressor localization: biochemical evidence that membrane and DNA binding by the PutA protein are mutually exclusive.
    Muro-Pastor AM; Ostrovsky P; Maloy S
    J Bacteriol; 1997 Apr; 179(8):2788-91. PubMed ID: 9098084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First evidence for substrate channeling between proline catabolic enzymes: a validation of domain fusion analysis for predicting protein-protein interactions.
    Sanyal N; Arentson BW; Luo M; Tanner JJ; Becker DF
    J Biol Chem; 2015 Jan; 290(4):2225-34. PubMed ID: 25492892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate channeling in proline metabolism.
    Arentson BW; Sanyal N; Becker DF
    Front Biosci (Landmark Ed); 2012 Jan; 17(1):375-88. PubMed ID: 22201749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation, DNA sequence analysis, and mutagenesis of a proline dehydrogenase gene (putA) from Bradyrhizobium japonicum.
    Straub PF; Reynolds PH; Althomsons S; Mett V; Zhu Y; Shearer G; Kohl DH
    Appl Environ Microbiol; 1996 Jan; 62(1):221-9. PubMed ID: 8572700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of proline utilization in Salmonella typhimurium: a membrane-associated dehydrogenase binds DNA in vitro.
    Ostrovsky de Spicer P; O'Brien K; Maloy S
    J Bacteriol; 1991 Jan; 173(1):211-9. PubMed ID: 1987118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delta1-pyrroline-5-carboxylic acid formed by proline dehydrogenase from the Bacillus subtilis ssp. natto expressed in Escherichia coli as a precursor for 2-acetyl-1-pyrroline.
    Huang TC; Huang YW; Hung HJ; Ho CT; Wu ML
    J Agric Food Chem; 2007 Jun; 55(13):5097-102. PubMed ID: 17536821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state kinetic mechanism of the proline:ubiquinone oxidoreductase activity of proline utilization A (PutA) from Escherichia coli.
    Moxley MA; Tanner JJ; Becker DF
    Arch Biochem Biophys; 2011 Dec; 516(2):113-20. PubMed ID: 22040654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proline catabolism by Pseudomonas putida: cloning, characterization, and expression of the put genes in the presence of root exudates.
    Vílchez S; Molina L; Ramos C; Ramos JL
    J Bacteriol; 2000 Jan; 182(1):91-9. PubMed ID: 10613867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a Conserved Histidine As Being Critical for the Catalytic Mechanism and Functional Switching of the Multifunctional Proline Utilization A Protein.
    Moxley MA; Zhang L; Christgen S; Tanner JJ; Becker DF
    Biochemistry; 2017 Jun; 56(24):3078-3088. PubMed ID: 28558236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.