These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 9638538)

  • 1. Engineering smooth muscle tissue with a predefined structure.
    Kim BS; Mooney DJ
    J Biomed Mater Res; 1998 Aug; 41(2):322-32. PubMed ID: 9638538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilized polyglycolic acid fibre-based tubes for tissue engineering.
    Mooney DJ; Mazzoni CL; Breuer C; McNamara K; Hern D; Vacanti JP; Langer R
    Biomaterials; 1996 Jan; 17(2):115-24. PubMed ID: 8624388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A structural model for the flexural mechanics of nonwoven tissue engineering scaffolds.
    Engelmayr GC; Sacks MS
    J Biomech Eng; 2006 Aug; 128(4):610-22. PubMed ID: 16813453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of technologies aiding large-tissue engineering.
    Eiselt P; Kim BS; Chacko B; Isenberg B; Peters MC; Greene KG; Roland WD; Loebsack AB; Burg KJ; Culberson C; Halberstadt CR; Holder WD; Mooney DJ
    Biotechnol Prog; 1998; 14(1):134-40. PubMed ID: 9496678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices.
    Kim BS; Putnam AJ; Kulik TJ; Mooney DJ
    Biotechnol Bioeng; 1998 Jan; 57(1):46-54. PubMed ID: 10099177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffolds for engineering smooth muscle under cyclic mechanical strain conditions.
    Kim BS; Mooney DJ
    J Biomech Eng; 2000 Jun; 122(3):210-5. PubMed ID: 10923287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaffolding for challenging environments: materials selection for tissue engineered intestine.
    Boomer L; Liu Y; Mahler N; Johnson J; Zak K; Nelson T; Lannutti J; Besner GE
    J Biomed Mater Res A; 2014 Nov; 102(11):3795-802. PubMed ID: 24288210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered smooth muscle tissues: regulating cell phenotype with the scaffold.
    Kim BS; Nikolovski J; Bonadio J; Smiley E; Mooney DJ
    Exp Cell Res; 1999 Sep; 251(2):318-28. PubMed ID: 10471317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.
    Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT
    Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of poly-glycolic acid-based hybrid polymer starter matrices for in vitro tissue engineering.
    Generali M; Kehl D; Capulli AK; Parker KK; Hoerstrup SP; Weber B
    Colloids Surf B Biointerfaces; 2017 Oct; 158():203-212. PubMed ID: 28697435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro engineering of human ear-shaped cartilage assisted with CAD/CAM technology.
    Liu Y; Zhang L; Zhou G; Li Q; Liu W; Yu Z; Luo X; Jiang T; Zhang W; Cao Y
    Biomaterials; 2010 Mar; 31(8):2176-83. PubMed ID: 20022366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the physical properties of two-dimensional polyester substrates on the growth of normal human urothelial and urinary smooth muscle cells in vitro.
    Rohman G; Pettit JJ; Isaure F; Cameron NR; Southgate J
    Biomaterials; 2007 May; 28(14):2264-74. PubMed ID: 17296219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering.
    Brugmans MM; Soekhradj-Soechit RS; van Geemen D; Cox M; Bouten CV; Baaijens FP; Driessen-Mol A
    Tissue Eng Part A; 2016 Jan; 22(1-2):123-32. PubMed ID: 26466917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores.
    Chen VJ; Ma PX
    Biomaterials; 2004 May; 25(11):2065-73. PubMed ID: 14741621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining chondrocytes and smooth muscle cells to engineer hybrid soft tissue constructs.
    Brown AN; Kim BS; Alsberg E; Mooney DJ
    Tissue Eng; 2000 Aug; 6(4):297-305. PubMed ID: 10992427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of volume-stable adipose tissues.
    Cho SW; Kim SS; Rhie JW; Cho HM; Choi CY; Kim BS
    Biomaterials; 2005 Jun; 26(17):3577-85. PubMed ID: 15621248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun fine-textured scaffolds for heart tissue constructs.
    Zong X; Bien H; Chung CY; Yin L; Fang D; Hsiao BS; Chu B; Entcheva E
    Biomaterials; 2005 Sep; 26(26):5330-8. PubMed ID: 15814131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation.
    Mikos AG; Bao Y; Cima LG; Ingber DE; Vacanti JP; Langer R
    J Biomed Mater Res; 1993 Feb; 27(2):183-9. PubMed ID: 8382203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment of novel meniscal scaffold structures using polyglycolic and poly-l-lactic acids.
    Murakami T; Otsuki S; Nakagawa K; Okamoto Y; Inoue T; Sakamoto Y; Sato H; Neo M
    J Biomater Appl; 2017 Aug; 32(2):150-161. PubMed ID: 28610487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.