BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 9638538)

  • 1. Engineering smooth muscle tissue with a predefined structure.
    Kim BS; Mooney DJ
    J Biomed Mater Res; 1998 Aug; 41(2):322-32. PubMed ID: 9638538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilized polyglycolic acid fibre-based tubes for tissue engineering.
    Mooney DJ; Mazzoni CL; Breuer C; McNamara K; Hern D; Vacanti JP; Langer R
    Biomaterials; 1996 Jan; 17(2):115-24. PubMed ID: 8624388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A structural model for the flexural mechanics of nonwoven tissue engineering scaffolds.
    Engelmayr GC; Sacks MS
    J Biomech Eng; 2006 Aug; 128(4):610-22. PubMed ID: 16813453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of technologies aiding large-tissue engineering.
    Eiselt P; Kim BS; Chacko B; Isenberg B; Peters MC; Greene KG; Roland WD; Loebsack AB; Burg KJ; Culberson C; Halberstadt CR; Holder WD; Mooney DJ
    Biotechnol Prog; 1998; 14(1):134-40. PubMed ID: 9496678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices.
    Kim BS; Putnam AJ; Kulik TJ; Mooney DJ
    Biotechnol Bioeng; 1998 Jan; 57(1):46-54. PubMed ID: 10099177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffolds for engineering smooth muscle under cyclic mechanical strain conditions.
    Kim BS; Mooney DJ
    J Biomech Eng; 2000 Jun; 122(3):210-5. PubMed ID: 10923287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaffolding for challenging environments: materials selection for tissue engineered intestine.
    Boomer L; Liu Y; Mahler N; Johnson J; Zak K; Nelson T; Lannutti J; Besner GE
    J Biomed Mater Res A; 2014 Nov; 102(11):3795-802. PubMed ID: 24288210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered smooth muscle tissues: regulating cell phenotype with the scaffold.
    Kim BS; Nikolovski J; Bonadio J; Smiley E; Mooney DJ
    Exp Cell Res; 1999 Sep; 251(2):318-28. PubMed ID: 10471317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.
    Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT
    Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of poly-glycolic acid-based hybrid polymer starter matrices for in vitro tissue engineering.
    Generali M; Kehl D; Capulli AK; Parker KK; Hoerstrup SP; Weber B
    Colloids Surf B Biointerfaces; 2017 Oct; 158():203-212. PubMed ID: 28697435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro engineering of human ear-shaped cartilage assisted with CAD/CAM technology.
    Liu Y; Zhang L; Zhou G; Li Q; Liu W; Yu Z; Luo X; Jiang T; Zhang W; Cao Y
    Biomaterials; 2010 Mar; 31(8):2176-83. PubMed ID: 20022366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the physical properties of two-dimensional polyester substrates on the growth of normal human urothelial and urinary smooth muscle cells in vitro.
    Rohman G; Pettit JJ; Isaure F; Cameron NR; Southgate J
    Biomaterials; 2007 May; 28(14):2264-74. PubMed ID: 17296219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering.
    Brugmans MM; Soekhradj-Soechit RS; van Geemen D; Cox M; Bouten CV; Baaijens FP; Driessen-Mol A
    Tissue Eng Part A; 2016 Jan; 22(1-2):123-32. PubMed ID: 26466917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores.
    Chen VJ; Ma PX
    Biomaterials; 2004 May; 25(11):2065-73. PubMed ID: 14741621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining chondrocytes and smooth muscle cells to engineer hybrid soft tissue constructs.
    Brown AN; Kim BS; Alsberg E; Mooney DJ
    Tissue Eng; 2000 Aug; 6(4):297-305. PubMed ID: 10992427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of volume-stable adipose tissues.
    Cho SW; Kim SS; Rhie JW; Cho HM; Choi CY; Kim BS
    Biomaterials; 2005 Jun; 26(17):3577-85. PubMed ID: 15621248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun fine-textured scaffolds for heart tissue constructs.
    Zong X; Bien H; Chung CY; Yin L; Fang D; Hsiao BS; Chu B; Entcheva E
    Biomaterials; 2005 Sep; 26(26):5330-8. PubMed ID: 15814131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation.
    Mikos AG; Bao Y; Cima LG; Ingber DE; Vacanti JP; Langer R
    J Biomed Mater Res; 1993 Feb; 27(2):183-9. PubMed ID: 8382203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment of novel meniscal scaffold structures using polyglycolic and poly-l-lactic acids.
    Murakami T; Otsuki S; Nakagawa K; Okamoto Y; Inoue T; Sakamoto Y; Sato H; Neo M
    J Biomater Appl; 2017 Aug; 32(2):150-161. PubMed ID: 28610487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.