These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9638935)

  • 1. Database searching using mass spectrometry data.
    Yates JR
    Electrophoresis; 1998 May; 19(6):893-900. PubMed ID: 9638935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass spectrometry and the age of the proteome.
    Yates JR
    J Mass Spectrom; 1998 Jan; 33(1):1-19. PubMed ID: 9449829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid identification of comigrating gel-isolated proteins by ion trap-mass spectrometry.
    Arnott D; Henzel WJ; Stults JT
    Electrophoresis; 1998 May; 19(6):968-80. PubMed ID: 9638943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of mass spectrometric molecular weight information to identify proteins in sequence databases.
    Mann M; Højrup P; Roepstorff P
    Biol Mass Spectrom; 1993 Jun; 22(6):338-45. PubMed ID: 8329463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide mass maps: a highly informative approach to protein identification.
    Yates JR; Speicher S; Griffin PR; Hunkapiller T
    Anal Biochem; 1993 Nov; 214(2):397-408. PubMed ID: 8109726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MudPIT: multidimensional protein identification technology.
    Delahunty CM; Yates JR
    Biotechniques; 2007 Nov; 43(5):563, 565, 567 passim. PubMed ID: 18072585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence database searches via de novo peptide sequencing by tandem mass spectrometry.
    Taylor JA; Johnson RS
    Rapid Commun Mass Spectrom; 1997; 11(9):1067-75. PubMed ID: 9204580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of proteins from non-model organisms using mass spectrometry: application to a hibernating mammal.
    Russeth KP; Higgins L; Andrews MT
    J Proteome Res; 2006 Apr; 5(4):829-39. PubMed ID: 16602690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein identification by peptide mass fingerprinting.
    Cottrell JS
    Pept Res; 1994; 7(3):115-24. PubMed ID: 8081066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen/deuterium exchange for higher specificity of protein identification by peptide mass fingerprinting.
    Bienvenut WV; Hoogland C; Greco A; Heller M; Gasteiger E; Appel RD; Diaz JJ; Sanchez JC; Hochstrasser DF
    Rapid Commun Mass Spectrom; 2002; 16(6):616-26. PubMed ID: 11870900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Including mutations from conceptually translated expressed sequence tags into orthologous proteins improves the preliminary assignment of peptide mass fingerprints on non-model genomes.
    Grimplet J; Gaspar JW; Gancel AL; Sauvage FX; Romieu C
    Proteomics; 2005 Jul; 5(11):2769-77. PubMed ID: 15996012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speeding up tandem mass spectrometry database search: metric embeddings and fast near neighbor search.
    Dutta D; Chen T
    Bioinformatics; 2007 Mar; 23(5):612-8. PubMed ID: 17237061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast tandem mass spectra-based protein identification regardless of the number of spectra or potential modifications examined.
    Falkner J; Andrews P
    Bioinformatics; 2005 May; 21(10):2177-84. PubMed ID: 15746284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of vacuum matrix-assisted laser desorption/ionization (MALDI) and atmospheric pressure MALDI (AP-MALDI) tandem mass spectrometry of 2-dimensional separated and trypsin-digested glomerular proteins for database search derived identification.
    Mayrhofer C; Krieger S; Raptakis E; Allmaier G
    J Proteome Res; 2006 Aug; 5(8):1967-78. PubMed ID: 16889419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive mass spectrometric analysis of the 20S proteasome complex.
    Huang L; Burlingame AL
    Methods Enzymol; 2005; 405():187-236. PubMed ID: 16413316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical models for protein validation using tandem mass spectral data and protein amino acid sequence databases.
    Sadygov RG; Liu H; Yates JR
    Anal Chem; 2004 Mar; 76(6):1664-71. PubMed ID: 15018565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches.
    Salih E
    Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex.
    Neubauer G; King A; Rappsilber J; Calvio C; Watson M; Ajuh P; Sleeman J; Lamond A; Mann M
    Nat Genet; 1998 Sep; 20(1):46-50. PubMed ID: 9731529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.