These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 9639169)
1. Cohort size and maximum likelihood estimation of mortality parameters. Service PM; Ochoa R; Valenzuela R; Michieli CA Exp Gerontol; 1998 Jun; 33(4):331-42. PubMed ID: 9639169 [TBL] [Abstract][Full Text] [Related]
2. The Gompertz equation as a predictive tool in demography. Mueller LD; Nusbaum TJ; Rose MR Exp Gerontol; 1995; 30(6):553-69. PubMed ID: 8867525 [TBL] [Abstract][Full Text] [Related]
3. Assessing the informational value of parameter estimates in cognitive models. Verguts T; Storms G Behav Res Methods Instrum Comput; 2004 Feb; 36(1):1-10. PubMed ID: 15190694 [TBL] [Abstract][Full Text] [Related]
4. Maximum likelihood estimation of life-span based on censored and passively registered historical data. Jonker MA Lifetime Data Anal; 2003 Mar; 9(1):35-56. PubMed ID: 12602773 [TBL] [Abstract][Full Text] [Related]
5. Efficient Standard Error Formulas of Ability Estimators with Dichotomous Item Response Models. Magis D Psychometrika; 2016 Mar; 81(1):184-200. PubMed ID: 25691364 [TBL] [Abstract][Full Text] [Related]
6. Phylogenetic analysis using parsimony and likelihood methods. Yang Z J Mol Evol; 1996 Feb; 42(2):294-307. PubMed ID: 8919881 [TBL] [Abstract][Full Text] [Related]
7. Information matrix estimation procedures for cognitive diagnostic models. Liu Y; Xin T; Andersson B; Tian W Br J Math Stat Psychol; 2019 Feb; 72(1):18-37. PubMed ID: 29508383 [TBL] [Abstract][Full Text] [Related]
8. Parameter recovery, bias and standard errors in the linear ballistic accumulator model. Visser I; Poessé R Br J Math Stat Psychol; 2017 May; 70(2):280-296. PubMed ID: 28474771 [TBL] [Abstract][Full Text] [Related]
9. Different Estimation Procedures for the Parameters of the Extended Exponential Geometric Distribution for Medical Data. Louzada F; Ramos PL; Perdoná GS Comput Math Methods Med; 2016; 2016():8727951. PubMed ID: 27579052 [TBL] [Abstract][Full Text] [Related]
10. Bivariate random-effects meta-analysis and the estimation of between-study correlation. Riley RD; Abrams KR; Sutton AJ; Lambert PC; Thompson JR BMC Med Res Methodol; 2007 Jan; 7():3. PubMed ID: 17222330 [TBL] [Abstract][Full Text] [Related]
11. A comparison of different bivariate correlated frailty models and estimation strategies. Wienke A; Arbeev KG; Locatelli I; Yashin AI Math Biosci; 2005 Nov; 198(1):1-13. PubMed ID: 16185720 [TBL] [Abstract][Full Text] [Related]
12. Modelling mortality of a stored grain insect pest with fumigation: probit, logistic or Cauchy model? Shi M; Renton M Math Biosci; 2013 Jun; 243(2):137-46. PubMed ID: 23473941 [TBL] [Abstract][Full Text] [Related]
13. Avoiding zero between-study variance estimates in random-effects meta-analysis. Chung Y; Rabe-Hesketh S; Choi IH Stat Med; 2013 Oct; 32(23):4071-89. PubMed ID: 23670939 [TBL] [Abstract][Full Text] [Related]
14. Maximum-likelihood versus maximum a posteriori parameter estimation of physiological system models: the C-peptide impulse response case study. Sparacino G; Tombolato C; Cobelli C IEEE Trans Biomed Eng; 2000 Jun; 47(6):801-11. PubMed ID: 10833855 [TBL] [Abstract][Full Text] [Related]
16. Maximum Augmented Empirical Likelihood Estimation of Categorical Marginal Models for Large Sparse Contingency Tables. van der Ark LA; Bergsma WP; Koopman L Psychometrika; 2023 Dec; 88(4):1228-1248. PubMed ID: 37752345 [TBL] [Abstract][Full Text] [Related]
17. Oracle estimation of parametric models under boundary constraints. Wong KY; Goldberg Y; Fine JP Biometrics; 2016 Dec; 72(4):1173-1183. PubMed ID: 27060984 [TBL] [Abstract][Full Text] [Related]
18. Bring More Data!-A Good Advice? Removing Separation in Logistic Regression by Increasing Sample Size. Šinkovec H; Geroldinger A; Heinze G Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31766753 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of underlying risk as a source of heterogeneity in meta-analyses: a simulation study of Bayesian and frequentist implementations of three models. Dohoo I; Stryhn H; Sanchez J Prev Vet Med; 2007 Sep; 81(1-3):38-55. PubMed ID: 17477995 [TBL] [Abstract][Full Text] [Related]
20. Heteroscedastic one-factor models and marginal maximum likelihood estimation. Hessen DJ; Dolan CV Br J Math Stat Psychol; 2009 Feb; 62(Pt 1):57-77. PubMed ID: 17935662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]