These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 9639576)
21. Transport of ketone bodies and lactate in the sheep ruminal epithelium by monocarboxylate transporter 1. Müller F; Huber K; Pfannkuche H; Aschenbach JR; Breves G; Gäbel G Am J Physiol Gastrointest Liver Physiol; 2002 Nov; 283(5):G1139-46. PubMed ID: 12381528 [TBL] [Abstract][Full Text] [Related]
22. Intracellular and extracellular carbonic anhydrases cooperate non-enzymatically to enhance activity of monocarboxylate transporters. Klier M; Andes FT; Deitmer JW; Becker HM J Biol Chem; 2014 Jan; 289(5):2765-75. PubMed ID: 24338019 [TBL] [Abstract][Full Text] [Related]
23. Crucial residue involved in L-lactate recognition by human monocarboxylate transporter 4 (hMCT4). Sasaki S; Kobayashi M; Futagi Y; Ogura J; Yamaguchi H; Takahashi N; Iseki K PLoS One; 2013; 8(7):e67690. PubMed ID: 23935841 [TBL] [Abstract][Full Text] [Related]
24. Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids. Tamai I; Takanaga H; Maeda H; Sai Y; Ogihara T; Higashida H; Tsuji A Biochem Biophys Res Commun; 1995 Sep; 214(2):482-9. PubMed ID: 7677755 [TBL] [Abstract][Full Text] [Related]
25. Catalytically inactive carbonic anhydrase-related proteins enhance transport of lactate by MCT1. Aspatwar A; Tolvanen MEE; Schneider HP; Becker HM; Narkilahti S; Parkkila S; Deitmer JW FEBS Open Bio; 2019 Jul; 9(7):1204-1211. PubMed ID: 31033227 [TBL] [Abstract][Full Text] [Related]
26. Involvement of monocarboxylate transporter 1 (SLC16A1) in the uptake of l-lactate in human astrocytes. Ideno M; Kobayashi M; Sasaki S; Futagi Y; Narumi K; Furugen A; Iseki K Life Sci; 2018 Jan; 192():110-114. PubMed ID: 29154783 [TBL] [Abstract][Full Text] [Related]
27. Kinetics of lactate and pyruvate transport in cultured rat myotubes. von Grumbckow L; Elsner P; Hellsten Y; Quistorff B; Juel C Biochim Biophys Acta; 1999 Mar; 1417(2):267-75. PubMed ID: 10082802 [TBL] [Abstract][Full Text] [Related]
28. Significance of short chain fatty acid transport by members of the monocarboxylate transporter family (MCT). Moschen I; Bröer A; Galić S; Lang F; Bröer S Neurochem Res; 2012 Nov; 37(11):2562-8. PubMed ID: 22878645 [TBL] [Abstract][Full Text] [Related]
29. Endogenous lactate transport in Xenopus laevis oocyte: dependence on cytoskeleton and regulation by protein kinases. Tosco M; Faelli A; Gastaldi G; Paulmichl M; Orsenigo MN J Comp Physiol B; 2008 May; 178(4):457-63. PubMed ID: 18180930 [TBL] [Abstract][Full Text] [Related]
30. The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF. Carpenter L; Halestrap AP Biochem J; 1994 Dec; 304 ( Pt 3)(Pt 3):751-60. PubMed ID: 7818477 [TBL] [Abstract][Full Text] [Related]
31. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters. Nancolas B; Guo L; Zhou R; Nath K; Nelson DS; Leeper DB; Blair IA; Glickson JD; Halestrap AP Biochem J; 2016 Apr; 473(7):929-36. PubMed ID: 26831515 [TBL] [Abstract][Full Text] [Related]
32. Uptake and release of dopamine through the rat dopamine transporter expressed in Xenopus laevis oocyte: evaluation by voltammetric measurement of intracellular dopamine concentration. Kitayama S; Morita K; Dohi T Neurosci Lett; 1996 Jun; 211(2):132-4. PubMed ID: 8830862 [TBL] [Abstract][Full Text] [Related]
33. The heterologous expression of H(+)-coupled transporters in Xenopus oocytes. Miller AJ; Smith SJ; Theodoulou FL Symp Soc Exp Biol; 1994; 48():167-77. PubMed ID: 7597641 [TBL] [Abstract][Full Text] [Related]
34. Functional and molecular characterisation of lactic acid transport in bovine articular chondrocytes. Meredith D; Bell P; McClure B; Wilkins R Cell Physiol Biochem; 2002; 12(4):227-34. PubMed ID: 12297728 [TBL] [Abstract][Full Text] [Related]
35. Regulation of cytosolic pH and lactic acid release in mesangial cells overexpressing GLUT1. Lang KS; Mueller MM; Tanneur V; Wallisch S; Fedorenko O; Palmada M; Lang F; Bröer S; Heilig CW; Schleicher E; Weigert C Kidney Int; 2003 Oct; 64(4):1338-47. PubMed ID: 12969152 [TBL] [Abstract][Full Text] [Related]
36. Electrogenic L-histidine transport in neutral and basic amino acid transporter (NBAT)-expressing Xenopus laevis oocytes. Evidence for two functionally distinct transport mechanisms induced by NBAT expression. Ahmed A; Yao PC; Brant AM; Peter GJ; Harper AA J Biol Chem; 1997 Jan; 272(1):125-30. PubMed ID: 8995237 [TBL] [Abstract][Full Text] [Related]
37. Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. Yabuuchi H; Tamai I; Nezu J; Sakamoto K; Oku A; Shimane M; Sai Y; Tsuji A J Pharmacol Exp Ther; 1999 May; 289(2):768-73. PubMed ID: 10215651 [TBL] [Abstract][Full Text] [Related]
38. Identity of SMCT1 (SLC5A8) as a neuron-specific Na+-coupled transporter for active uptake of L-lactate and ketone bodies in the brain. Martin PM; Gopal E; Ananth S; Zhuang L; Itagaki S; Prasad BM; Smith SB; Prasad PD; Ganapathy V J Neurochem; 2006 Jul; 98(1):279-88. PubMed ID: 16805814 [TBL] [Abstract][Full Text] [Related]
39. Integration of a 'proton antenna' facilitates transport activity of the monocarboxylate transporter MCT4. Noor SI; Pouyssegur J; Deitmer JW; Becker HM FEBS J; 2017 Jan; 284(1):149-162. PubMed ID: 27860283 [TBL] [Abstract][Full Text] [Related]
40. Vestibular dark cells contain an H+/monocarboxylate- cotransporter in their apical and basolateral membrane. Shimozono M; Liu J; Scofield MA; Wangemann P J Membr Biol; 1998 May; 163(1):37-46. PubMed ID: 9569248 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]