These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9639591)

  • 1. Burrow ventilation in the tube-dwelling shimp Callianassa subterranea (Decapoda: thalassinidea). III. Hydrodynamic modelling and the energetics of pleopod pumping.
    Stamhuis EJ; Videler JJ
    J Exp Biol; 1998 Jul; 201(Pt 14):2171-81. PubMed ID: 9639591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Burrow ventilation in the tube-dwelling shrimp callianassa subterranea (Decapoda: thalassinidea). II. The flow in the vicinity of the shrimp and the energetic advantages of a laminar non-pulsating ventilation current.
    Stamhuis EJ; Videler JJ
    J Exp Biol; 1998 Jul; 201(Pt 14):2159-70. PubMed ID: 9639590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Burrow ventilation in the tube-dwelling shrimp Callianassa subterranea (Decapoda: thalassinidea). I. Morphology and motion of the pleopods, uropods and telson.
    Stamhuis EJ; Videler JJ
    J Exp Biol; 1998 Jul; 201(Pt 14):2151-8. PubMed ID: 9639589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metachronal Swimming of Mantis Shrimp: Kinematics and Interpleopod Vortex Interactions.
    Garayev K; Murphy DW
    Integr Comp Biol; 2021 Nov; 61(5):1631-1643. PubMed ID: 33997904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematics, hydrodynamics and force production of pleopods suggest jet-assisted walking in the American lobster (Homarus americanus).
    Lim JL; Demont ME
    J Exp Biol; 2009 Sep; 212(17):2731-45. PubMed ID: 19684205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanics, power output and efficiency of the swimming muskrat (Ondatra zibethicus).
    Fish FE
    J Exp Biol; 1984 May; 110():183-201. PubMed ID: 6379093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity and physiological significance of the pleopods in the respiration of Callianassa californiensis (Dana) (Crustacea: Thalassinidea).
    Torres JJ; Gluck DL; Childress JJ
    Biol Bull; 1977 Feb; 152(1):134-46. PubMed ID: 13871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drag force acting on a neuromast in the fish lateral line trunk canal. II. Analytical modelling of parameter dependencies.
    Humphrey JA
    J R Soc Interface; 2009 Jul; 6(36):641-53. PubMed ID: 18926966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swimming in the California sea lion: morphometrics, drag and energetics.
    Feldkamp SD
    J Exp Biol; 1987 Sep; 131():117-35. PubMed ID: 3694112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tail thrust of bluefish Pomatomus saltatrix at different buoyancies, speeds, and swimming angles.
    Ogilvy CS; DuBois AB
    J Exp Biol; 1982 Jun; 98():105-17. PubMed ID: 7108430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the role of phase lag in multi-appendage metachronal swimming of euphausiids.
    Ford MP; Santhanakrishnan A
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 33171451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hydrodynamics of locomotion at intermediate Reynolds numbers: undulatory swimming in ascidian larvae (Botrylloides sp.).
    McHenry MJ; Azizi E; Strother JA
    J Exp Biol; 2003 Jan; 206(Pt 2):327-43. PubMed ID: 12477902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicus (Scombridae).
    Nauen JC; Lauder GV
    J Exp Biol; 2002 Jun; 205(Pt 12):1709-24. PubMed ID: 12042330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Power requirements of swimming: do new methods resolve old questions?
    Schultz WW; Webb PW
    Integr Comp Biol; 2002 Nov; 42(5):1018-25. PubMed ID: 21680383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of vortex formation and thrust performance in drag-based paddling propulsion.
    Kim D; Gharib M
    J Exp Biol; 2011 Jul; 214(Pt 13):2283-91. PubMed ID: 21653822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanics of swimming in the pufferfish Diodon holocanthus: propulsive momentum enhancement is an adaptation for thrust production in an undulatory median and paired-fin swimmer.
    Blake RW; Chan KH
    J Fish Biol; 2011 Dec; 79(7):1774-94. PubMed ID: 22141887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separability of drag and thrust in undulatory animals and machines.
    Bale R; Shirgaonkar AA; Neveln ID; Bhalla AP; MacIver MA; Patankar NA
    Sci Rep; 2014 Dec; 4():7329. PubMed ID: 25491270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational fluid dynamics analysis of hydrodynamic force acting on a swimmer's hand in a swimming competition.
    Sato Y; Hino T
    J Sports Sci Med; 2013; 12(4):679-89. PubMed ID: 24421727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight.
    Wang JK; Sun M
    J Exp Biol; 2005 Oct; 208(Pt 19):3785-804. PubMed ID: 16169955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.