These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 9639598)
1. Aerobic chemolithoautotrophic growth and RubisCO function in Rhodobacter capsulatus and a spontaneous gain of function mutant of Rhodobacter sphaeroides. Paoli GC; Tabita FR Arch Microbiol; 1998 Jul; 170(1):8-17. PubMed ID: 9639598 [TBL] [Abstract][Full Text] [Related]
2. Reductive pentose phosphate-independent CO2 fixation in Rhodobacter sphaeroides and evidence that ribulose bisphosphate carboxylase/oxygenase activity serves to maintain the redox balance of the cell. Wang X; Falcone DL; Tabita FR J Bacteriol; 1993 Jun; 175(11):3372-9. PubMed ID: 8501041 [TBL] [Abstract][Full Text] [Related]
3. Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway. Tichi MA; Tabita FR Arch Microbiol; 2000 Nov; 174(5):322-33. PubMed ID: 11131022 [TBL] [Abstract][Full Text] [Related]
4. Photolithoautotrophic growth and control of CO2 fixation in Rhodobacter sphaeroides and Rhodospirillum rubrum in the absence of ribulose bisphosphate carboxylase-oxygenase. Wang X; Modak HV; Tabita FR J Bacteriol; 1993 Nov; 175(21):7109-14. PubMed ID: 8226655 [TBL] [Abstract][Full Text] [Related]
6. Differential expression of the CO2 fixation operons of Rhodobacter sphaeroides by the Prr/Reg two-component system during chemoautotrophic growth. Gibson JL; Dubbs JM; Tabita FR J Bacteriol; 2002 Dec; 184(23):6654-64. PubMed ID: 12426354 [TBL] [Abstract][Full Text] [Related]
7. Expression of the cbbLcbbS and cbbM genes and distinct organization of the cbb Calvin cycle structural genes of Rhodobacter capsulatus. Paoli GC; Morgan NS; Tabita FR; Shively JM Arch Microbiol; 1995 Dec; 164(6):396-405. PubMed ID: 8588741 [TBL] [Abstract][Full Text] [Related]
8. The "green" form I ribulose 1,5-bisphosphate carboxylase/oxygenase from the nonsulfur purple bacterium Rhodobacter capsulatus. Horken KM; Tabita FR J Bacteriol; 1999 Jul; 181(13):3935-41. PubMed ID: 10383960 [TBL] [Abstract][Full Text] [Related]
9. Regulation of nitrogenase in the photosynthetic bacterium Rhodobacter sphaeroides containing draTG and nifHDK genes from Rhodobacter capsulatus. Yakunin AF; Fedorov AS; Laurinavichene TV; Glaser VM; Egorov NS; Tsygankov AA; Zinchenko VV; Hallenbeck PC Can J Microbiol; 2001 Mar; 47(3):206-12. PubMed ID: 11315111 [TBL] [Abstract][Full Text] [Related]
10. Rhodobacter capsulatus genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase (cbbLS) and neighbouring genes were acquired by a horizontal gene transfer. Paoli GC; Soyer F; Shively J; Tabita FR Microbiology (Reading); 1998 Jan; 144 ( Pt 1)():219-227. PubMed ID: 9467914 [TBL] [Abstract][Full Text] [Related]
11. Transposon mutagenesis and physiological analysis of strains containing inactivated form I and form II ribulose bisphosphate carboxylase/oxygenase genes in Rhodobacter sphaeroides. Falcone DL; Quivey RG; Tabita FR J Bacteriol; 1988 Jan; 170(1):5-11. PubMed ID: 2826406 [TBL] [Abstract][Full Text] [Related]
12. A Rubisco mutant that confers growth under a normally "inhibitory" oxygen concentration. Satagopan S; Scott SS; Smith TG; Tabita FR Biochemistry; 2009 Sep; 48(38):9076-83. PubMed ID: 19705820 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of catalytically active form III ribulose 1,5-bisphosphate carboxylase/oxygenase in archaea. Finn MW; Tabita FR J Bacteriol; 2003 May; 185(10):3049-59. PubMed ID: 12730164 [TBL] [Abstract][Full Text] [Related]
14. Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of Rhodospirillum rubrum. Falcone DL; Tabita FR J Bacteriol; 1993 Aug; 175(16):5066-77. PubMed ID: 8349547 [TBL] [Abstract][Full Text] [Related]
15. Acetate-dependent photoheterotrophic growth and the differential requirement for the Calvin-Benson-Bassham reductive pentose phosphate cycle in Rhodobacter sphaeroides and Rhodopseudomonas palustris. Laguna R; Tabita FR; Alber BE Arch Microbiol; 2011 Feb; 193(2):151-4. PubMed ID: 21104179 [TBL] [Abstract][Full Text] [Related]
16. A global signal transduction system regulates aerobic and anaerobic CO2 fixation in Rhodobacter sphaeroides. Qian Y; Tabita FR J Bacteriol; 1996 Jan; 178(1):12-8. PubMed ID: 8550404 [TBL] [Abstract][Full Text] [Related]
17. Expression of endogenous and foreign ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) genes in a RubisCO deletion mutant of Rhodobacter sphaeroides. Falcone DL; Tabita FR J Bacteriol; 1991 Mar; 173(6):2099-108. PubMed ID: 1900508 [TBL] [Abstract][Full Text] [Related]
18. The cytochrome bc1 complex of Rhodobacter sphaeroides can restore cytochrome c2-independent photosynthetic growth to a Rhodobacter capsulatus mutant lacking cytochrome bc1. Davidson E; Prince RC; Haith CE; Daldal F J Bacteriol; 1989 Nov; 171(11):6059-68. PubMed ID: 2553670 [TBL] [Abstract][Full Text] [Related]
19. Roles of CfxA, CfxB, and external electron acceptors in regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase expression in Rhodobacter sphaeroides. Hallenbeck PL; Lerchen R; Hessler P; Kaplan S J Bacteriol; 1990 Apr; 172(4):1736-48. PubMed ID: 2108123 [TBL] [Abstract][Full Text] [Related]
20. Expression and regulation of Bradyrhizobium japonicum and Xanthobacter flavus CO2 fixation genes in a photosynthetic bacterial host. Falcone DL; Tabita FR J Bacteriol; 1993 Feb; 175(3):866-9. PubMed ID: 8423157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]