BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9639603)

  • 1. Two membrane anchors of Wolinella succinogenes hydrogenase and their function in fumarate and polysulfide respiration.
    Gross R; Simon J; Theis F; Kröger A
    Arch Microbiol; 1998 Jul; 170(1):50-8. PubMed ID: 9639603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2.
    Gross R; Simon J; Lancaster CR; Kröger A
    Mol Microbiol; 1998 Nov; 30(3):639-46. PubMed ID: 9822828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A periplasmic flavoprotein in Wolinella succinogenes that resembles the fumarate reductase of Shewanella putrefaciens.
    Simon J; Gross R; Klimmek O; Ringel M; Kröger A
    Arch Microbiol; 1998 May; 169(5):424-33. PubMed ID: 9560424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hydE gene is essential for the formation of Wolinella succinogenes NiFe-hydrogenase.
    Gross R; Simon J
    FEMS Microbiol Lett; 2003 Oct; 227(2):197-202. PubMed ID: 14592709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the twin-arginine motif in the signal peptide encoded by the hydA gene of the hydrogenase from wolinella succinogenes.
    Gross R; Simon J; Kroger A
    Arch Microbiol; 1999 Oct; 172(4):227-32. PubMed ID: 10525739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the menaquinone reduction site in the diheme cytochrome b membrane anchor of Wolinella succinogenes NiFe-hydrogenase.
    Gross R; Pisa R; Sänger M; Lancaster CR; Simon J
    J Biol Chem; 2004 Jan; 279(1):274-81. PubMed ID: 14576151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes.
    Dross F; Geisler V; Lenger R; Theis F; Krafft T; Fahrenholz F; Kojro E; Duchêne A; Tripier D; Juvenal K
    Eur J Biochem; 1992 May; 206(1):93-102. PubMed ID: 1587288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and physiological characterization of new Escherichia coli mutants impaired in hydrogenase activity.
    Wu LF; Mandrand-Berthelot MA
    Biochimie; 1986 Jan; 68(1):167-79. PubMed ID: 3089308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periplasmic methacrylate reductase activity in Wolinella succinogenes.
    Gross R; Simon J; Kröger A
    Arch Microbiol; 2001 Oct; 176(4):310-3. PubMed ID: 11685377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of coupled fumarate respiration in liposomes by incorporating the electron transport enzymes isolated from Wolinella succinogenes.
    Biel S; Simon J; Gross R; Ruiz T; Ruitenberg M; Kröger A
    Eur J Biochem; 2002 Apr; 269(7):1974-83. PubMed ID: 11952800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion and site-directed mutagenesis of the Wolinella succinogenes fumarate reductase operon.
    Simon J; Gross R; Ringel M; Schmidt E; Kröger A
    Eur J Biochem; 1998 Jan; 251(1-2):418-26. PubMed ID: 9492313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism.
    Kröger A; Biel S; Simon J; Gross R; Unden G; Lancaster CR
    Biochim Biophys Acta; 2002 Jan; 1553(1-2):23-38. PubMed ID: 11803015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PsrR, a member of the AraC family of transcriptional regulators, is required for the synthesis of Wolinella succinogenes polysulfide reductase.
    Braatsch S; Krafft T; Simon J; Gross R; Klimmek O; Kröger A
    Arch Microbiol; 2002 Sep; 178(3):202-7. PubMed ID: 12189421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of a Wolinella succinogenes mutant lacking periplasmic sulfide dehydrogenase (Sud).
    Kotzian S; Kreis-Kleinschmidt V; Krafft T; Klimmek O; Macy JM; Kröger A
    Arch Microbiol; 1996 Jan; 165(1):65-8. PubMed ID: 8639024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The function of Wolinella succinogenes psr genes in electron transport with polysulphide as the terminal electron acceptor.
    Krafft T; Gross R; Kröger A
    Eur J Biochem; 1995 Jun; 230(2):601-6. PubMed ID: 7607234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavodoxin from Wolinella succinogenes.
    Biel S; Klimmek O; Gross R; Kröger A
    Arch Microbiol; 1996 Aug; 166(2):122-7. PubMed ID: 8772174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diphenylene iodonium as an inhibitor for the hydrogenase complex of Rhodobacter capsulatus. Evidence for two distinct electron donor sites.
    Magnani P; Doussiere J; Lissolo T
    Biochim Biophys Acta; 2000 Jul; 1459(1):169-78. PubMed ID: 10924909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The function of methyl-menaquinone-6 and polysulfide reductase membrane anchor (PsrC) in polysulfide respiration of Wolinella succinogenes.
    Dietrich W; Klimmek O
    Eur J Biochem; 2002 Feb; 269(4):1086-95. PubMed ID: 11856339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of C(4)-dicarboxylates in Wolinella succinogenes.
    Ullmann R; Gross R; Simon J; Unden G; Kröger A
    J Bacteriol; 2000 Oct; 182(20):5757-64. PubMed ID: 11004174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of a second gene cluster encoding the formate dehydrogenase of Wolinella succinogenes.
    Lenger R; Herrmann U; Gross R; Simon J; Kröger A
    Eur J Biochem; 1997 Jun; 246(3):646-51. PubMed ID: 9219521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.