These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 9639888)
1. Detecting single base substitutions, mismatches and bulges in DNA by temperature gradient gel electrophoresis and related methods. Wartell RM; Hosseini S; Powell S; Zhu J J Chromatogr A; 1998 May; 806(1):169-85. PubMed ID: 9639888 [TBL] [Abstract][Full Text] [Related]
2. Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Riesner D; Steger G; Zimmat R; Owens RA; Wagenhöfer M; Hillen W; Vollbach S; Henco K Electrophoresis; 1989; 10(5-6):377-89. PubMed ID: 2475340 [TBL] [Abstract][Full Text] [Related]
3. Detecting base pair substitutions in DNA fragments by temperature-gradient gel electrophoresis. Wartell RM; Hosseini SH; Moran CP Nucleic Acids Res; 1990 May; 18(9):2699-705. PubMed ID: 2339057 [TBL] [Abstract][Full Text] [Related]
4. Influence of nearest neighbor sequence on the stability of base pair mismatches in long DNA; determination by temperature-gradient gel electrophoresis. Ke SH; Wartell RM Nucleic Acids Res; 1993 Nov; 21(22):5137-43. PubMed ID: 8255768 [TBL] [Abstract][Full Text] [Related]
5. The relative stabilities of base pair stacking interactions and single mismatches in long RNA measured by temperature gradient gel electrophoresis. Zhu J; Wartell RM Biochemistry; 1997 Dec; 36(49):15326-35. PubMed ID: 9398261 [TBL] [Abstract][Full Text] [Related]
6. Mutation screening of the TP53 gene by temporal temperature gradient gel electrophoresis. Sørlie T; Johnsen H; Vu P; Lind GE; Lothe R; Børresen-Dale AL Methods Mol Biol; 2005; 291():207-16. PubMed ID: 15502225 [TBL] [Abstract][Full Text] [Related]
7. Temperature gradient gel electrophoresis (TGGE) for the detection of polymorphic DNA and RNA. Henco K; Harders J; Wiese U; Riesner D Methods Mol Biol; 1994; 31():211-28. PubMed ID: 7522829 [No Abstract] [Full Text] [Related]
8. Rapid identification of gene defects in protein C deficiency by temperature gradient gel electrophoresis. Hernández A; Uhrberg M; Enczmann J; Witt I; Reitsma PH; Wernet P Blood Coagul Fibrinolysis; 1995 Feb; 6(1):23-30. PubMed ID: 7795150 [TBL] [Abstract][Full Text] [Related]
9. Detection of mutations and polymorphisms of Gs alpha subunit gene by denaturing gradient gel electrophoresis. Gejman PV; Weinstein LS Methods Enzymol; 1994; 237():308-20. PubMed ID: 7935007 [No Abstract] [Full Text] [Related]
10. Detection of single base substitutions in influenza virus RNA molecules by denaturing gradient gel electrophoresis of RNA-RNA or DNA-RNA heteroduplexes. Smith FI; Parvin JD; Palese P Virology; 1986 Apr; 150(1):55-64. PubMed ID: 3952989 [TBL] [Abstract][Full Text] [Related]
11. Temperature-gradient gel electrophoresis for the detection of polymorphic DNA and for quantitative polymerase chain reaction. Riesner D; Steger G; Wiese U; Wulfert M; Heibey M; Henco K Electrophoresis; 1992; 13(9-10):632-6. PubMed ID: 1360894 [TBL] [Abstract][Full Text] [Related]
12. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Fischer SG; Lerman LS Proc Natl Acad Sci U S A; 1983 Mar; 80(6):1579-83. PubMed ID: 6220406 [TBL] [Abstract][Full Text] [Related]
13. Selecting DNA fragments for mutation detection by temperature gradient gel electrophoresis: application to the p53 gene cDNA. Ke SH; Kelly PJ; Wartell RM; Hunter S; Varma VA Electrophoresis; 1993 Jul; 14(7):561-5. PubMed ID: 8375344 [TBL] [Abstract][Full Text] [Related]
14. The use of denaturing gradient gel electrophoresis to screen for DNA sequence polymorphisms in the human factor VIII gene. Collins M; Wolf SF; Haines LL; Mitsock L Electrophoresis; 1989; 10(5-6):390-6. PubMed ID: 2569966 [TBL] [Abstract][Full Text] [Related]
15. Temperature gradient gel electrophoresis analysis of the beta-NGF gene in schizophrenia. Khan AS; Freedman R; Byerley W; Leonard S J Psychiatry Neurosci; 1995 May; 20(3):199-209. PubMed ID: 7786881 [TBL] [Abstract][Full Text] [Related]
16. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Myers RM; Fischer SG; Lerman LS; Maniatis T Nucleic Acids Res; 1985 May; 13(9):3131-45. PubMed ID: 4000972 [TBL] [Abstract][Full Text] [Related]
17. Detection of base mutations in genomic DNA using denaturing gradient gel electrophoresis (DGGE) followed by transfer and hybridization with gene-specific probes. Børresen AL; Hovig E; Brøgger A Mutat Res; 1988 Nov; 202(1):77-83. PubMed ID: 2903443 [TBL] [Abstract][Full Text] [Related]
18. Influence of neighboring base pairs on the stability of single base bulges and base pairs in a DNA fragment. Ke SH; Wartell RM Biochemistry; 1995 Apr; 34(14):4593-600. PubMed ID: 7718561 [TBL] [Abstract][Full Text] [Related]
19. The effect of base sequence on the stability of RNA and DNA single base bulges. Zhu J; Wartell RM Biochemistry; 1999 Nov; 38(48):15986-93. PubMed ID: 10625466 [TBL] [Abstract][Full Text] [Related]
20. Detection of mutations by denaturing gradient gel electrophoresis. Børresen-Dale AL; Hovig E; Smith-Sørensen B Curr Protoc Hum Genet; 2001 May; Chapter 7():Unit 7.5. PubMed ID: 18428306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]