These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Localization of phytase in Selenomonas ruminantium and Mitsuokella multiacidus by transmission electron microscopy. D'Silva CG; Bae HD; Yanke LJ; Cheng KJ; Selinger LB Can J Microbiol; 2000 Apr; 46(4):391-5. PubMed ID: 10779878 [TBL] [Abstract][Full Text] [Related]
3. Restriction and modification systems of ruminal bacteria. Pristas P; Molnárová V; Javorský P Folia Microbiol (Praha); 2001; 46(1):71-2. PubMed ID: 11501482 [TBL] [Abstract][Full Text] [Related]
4. Diversity, abundance and characterization of ruminal cysteine phytases suggest their important role in phytate degradation. Huang H; Zhang R; Fu D; Luo J; Li Z; Luo H; Shi P; Yang P; Diao Q; Yao B Environ Microbiol; 2011 Mar; 13(3):747-57. PubMed ID: 21105982 [TBL] [Abstract][Full Text] [Related]
5. Culture conditions influencing phytase production of Mitsuokella jalaludinii, a new bacterial species from the rumen of cattle. Lan GQ; Abdullah N; Jalaludin S; Ho YW J Appl Microbiol; 2002; 93(4):668-74. PubMed ID: 12234350 [TBL] [Abstract][Full Text] [Related]
6. Genetic diversity and expression profiles of cysteine phytases in the sheep rumen during a feeding cycle. Li Z; Huang H; Zhao H; Meng K; Zhao J; Shi P; Yang P; Luo H; Wang Y; Yao B Lett Appl Microbiol; 2014 Dec; 59(6):615-20. PubMed ID: 25146240 [TBL] [Abstract][Full Text] [Related]
7. Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis. Chu HM; Guo RT; Lin TW; Chou CC; Shr HL; Lai HL; Tang TY; Cheng KJ; Selinger BL; Wang AH Structure; 2004 Nov; 12(11):2015-24. PubMed ID: 15530366 [TBL] [Abstract][Full Text] [Related]
8. Evidence for recent intergeneric transfer of a new tetracycline resistance gene, tet(W), isolated from Butyrivibrio fibrisolvens, and the occurrence of tet(O) in ruminal bacteria. Barbosa TM; Scott KP; Flint HJ Environ Microbiol; 1999 Feb; 1(1):53-64. PubMed ID: 11207718 [TBL] [Abstract][Full Text] [Related]
9. Phytase activity as a novel metabolic feature in Bifidobacterium. Haros M; Bielecka M; Sanz Y FEMS Microbiol Lett; 2005 Jun; 247(2):231-9. PubMed ID: 15935567 [TBL] [Abstract][Full Text] [Related]
10. Use of antibiotic resistance mutations to track strains of obligately anaerobic bacteria introduced into the rumen of sheep. Flint HJ; Bisset J; Webb J J Appl Bacteriol; 1989 Aug; 67(2):177-83. PubMed ID: 2808185 [TBL] [Abstract][Full Text] [Related]
11. myo-inositol phosphate isomers generated by the action of a phytase from a malaysian waste-water bacterium. Greiner R; Farouk AE; Carlsson NG; Konietzny U Protein J; 2007 Dec; 26(8):577-84. PubMed ID: 17805950 [TBL] [Abstract][Full Text] [Related]
12. Enzymes associated with metabolism of xylose and other pentoses by Prevotella (Bacteroides) ruminicola strains, Selenomonas ruminantium D, and Fibrobacter succinogenes S85. Matte A; Forsberg CW; Verrinder Gibbins AM Can J Microbiol; 1992 May; 38(5):370-6. PubMed ID: 1643581 [TBL] [Abstract][Full Text] [Related]
13. Effect of Phytase on in Vitro Hydrolysis of Phytate and the Formation of Hirvonen J; Liljavirta J; Saarinen MT; Lehtinen MJ; Ahonen I; Nurminen P J Agric Food Chem; 2019 Oct; 67(41):11396-11402. PubMed ID: 31537068 [TBL] [Abstract][Full Text] [Related]
14. Ambient pH regulates lactate catabolism pathway of the ruminal Megasphaera elsdenii BE2-2083 and Selenomonas ruminantium HD4. Fan Y; Xia G; Jin Y; Wang H J Appl Microbiol; 2022 Apr; 132(4):2661-2672. PubMed ID: 35104035 [TBL] [Abstract][Full Text] [Related]
15. Detection of N6-methyladenine in GATC sequences of Selenomonas ruminantium. Pristas P; Molnarova V; Javorsky P J Basic Microbiol; 1998; 38(4):283-7. PubMed ID: 9791949 [TBL] [Abstract][Full Text] [Related]
16. Different restriction and modification phenotypes in ruminal lactate-utilizing bacteria. Piknova M; Filova M; Javorsky P; Pristas P FEMS Microbiol Lett; 2004 Jul; 236(1):91-5. PubMed ID: 15212796 [TBL] [Abstract][Full Text] [Related]
17. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Wyss M; Brugger R; Kronenberger A; Rémy R; Fimbel R; Oesterhelt G; Lehmann M; van Loon AP Appl Environ Microbiol; 1999 Feb; 65(2):367-73. PubMed ID: 9925555 [TBL] [Abstract][Full Text] [Related]
18. A novel purple acid phytase from an earthworm cast bacterium. Ghorbani Nasrabadi R; Greiner R; Yamchi A; Nourzadeh Roshan E J Sci Food Agric; 2018 Aug; 98(10):3667-3674. PubMed ID: 29266239 [TBL] [Abstract][Full Text] [Related]
19. A protein tyrosine phosphatase-like inositol polyphosphatase from Selenomonas ruminantium subsp. lactilytica has specificity for the 5-phosphate of myo-inositol hexakisphosphate. Puhl AA; Greiner R; Selinger LB Int J Biochem Cell Biol; 2008; 40(10):2053-64. PubMed ID: 18358762 [TBL] [Abstract][Full Text] [Related]
20. Effect of exogenous phytase on degradation of inositol phosphate in dairy cows. Brask-Pedersen DN; Glitsø LV; Skov LK; Lund P; Sehested J J Dairy Sci; 2013 Mar; 96(3):1691-700. PubMed ID: 23312994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]