These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9639938)

  • 1. Distribution of 14C-labelled carbon from glucose and glutamate during anaerobic growth of Saccharomyces cerevisiae.
    Albers E; Gustafsson L; Niklasson C; Lidén G
    Microbiology (Reading); 1998 Jun; 144 ( Pt 6)():1683-1690. PubMed ID: 9639938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation by 13C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways for succinate formation in Saccharomyces cerevisiae during anaerobic fermentation.
    Camarasa C; Grivet JP; Dequin S
    Microbiology (Reading); 2003 Sep; 149(Pt 9):2669-2678. PubMed ID: 12949191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The operation of the gamma-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro.
    Balázs R; Machiyama Y; Hammond BJ; Julian T; Richter D
    Biochem J; 1970 Feb; 116(3):445-61. PubMed ID: 5435689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of reductive production of succinate under anaerobic conditions in baker's yeast.
    Muratsubaki H
    J Biochem; 1987 Oct; 102(4):705-14. PubMed ID: 3325498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant.
    Boles E; Lehnert W; Zimmermann FK
    Eur J Biochem; 1993 Oct; 217(1):469-77. PubMed ID: 7901008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EXCHANGE TRANSAMINATION AND THE METABOLISM OF GLUTAMATE IN BRAIN.
    BALAZS R; HASLAM J
    Biochem J; 1965 Jan; 94(1):131-41. PubMed ID: 14342220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of conversion of aspartate into glutamate in cerebral-cortex slices.
    Simon G; Drori JB; Cohen MM
    Biochem J; 1967 Jan; 102(1):153-62. PubMed ID: 6030277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool.
    Nissen TL; Anderlund M; Nielsen J; Villadsen J; Kielland-Brandt MC
    Yeast; 2001 Jan; 18(1):19-32. PubMed ID: 11124698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of glutamic acid in Saccharomyces: accumulation of tricarboxylic acid cycle intermediates in a glutamate auxotroph.
    Crocker WH; Bhattacharjee JK
    Appl Microbiol; 1973 Sep; 26(3):303-8. PubMed ID: 4751788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADP+-dependent glutamate dehydrogenase activity is impaired in mutants of Saccharomyces cerevisiae that lack aconitase.
    González A; Rodríguez L; Olivera H; Soberón M
    J Gen Microbiol; 1985 Oct; 131(10):2565-71. PubMed ID: 2866224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A difference in the incorporation of 14C into hippurate glycine from DL-(2-14C)-glutamate and DL-(5-14C)glutamate in guinea pigs.
    Rowsell KV; Ali TA
    Biochem J; 1975 Nov; 152(2):357-63. PubMed ID: 1220690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation.
    Albers E; Larsson C; Lidén G; Niklasson C; Gustafsson L
    Appl Environ Microbiol; 1996 Sep; 62(9):3187-95. PubMed ID: 8795209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of alpha-ketoglutarate by the reductive carboxylation of succinate in Bacteroides ruminicola.
    Allison MJ; Robinson IM
    J Bacteriol; 1970 Oct; 104(1):50-6. PubMed ID: 5473908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aldehyde dehydrogenase induction by glutamate in Escherichia coli. Role of 2-oxoglutarate.
    Quintilla FX; Baldoma L; Badia J; Aguilar J
    Eur J Biochem; 1991 Dec; 202(3):1321-5. PubMed ID: 1684935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The metabolism of amino acids in the bovine lens. Their oxidation as a source of energy.
    Trayhurn P; van Heyningen R
    Biochem J; 1973 Sep; 136(1):67-75. PubMed ID: 4772629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alpha-ketoglutarate as an intermediate in glutamate metabolism by Peptococcus aerogenes.
    Johnson WM; Westlake DW
    Can J Microbiol; 1972 Jun; 18(6):875-80. PubMed ID: 4338317
    [No Abstract]   [Full Text] [Related]  

  • 17. Determination of flux through different metabolite pathways in Saccharomyces cerevisiae by 1H-NMR and 13C-NMR spectroscopy.
    Tran-Dinh S; Herve M; Wietzerbin J
    Eur J Biochem; 1991 Nov; 201(3):715-21. PubMed ID: 1682149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogenesis of mitochondria. The effects of physiological and genetic manipulation of Saccharomyces cerevisiae on the mitochondrial transport systems for tricarboxylate-cycle anions.
    Perkins M; Haslam JM; Linnane AW
    Biochem J; 1973 Aug; 134(4):923-34. PubMed ID: 4587072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the physiological significance of the lack of a pyruvate dehydrogenase complex in Hyphomicrobium sp.
    Harder W; Matin A; Attwood MM
    J Gen Microbiol; 1975 Feb; 86(2):319-26. PubMed ID: 1113081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS.
    BALAZS R
    Biochem J; 1965 May; 95(2):497-508. PubMed ID: 14340100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.