These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 9639938)

  • 41. Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae.
    Nissen TL; Schulze U; Nielsen J; Villadsen J
    Microbiology (Reading); 1997 Jan; 143 ( Pt 1)():203-218. PubMed ID: 9025295
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Citrate synthaseless glutamic acid auxotroph of Saccharomyces cerevisiae.
    Burand JP; Drillien R; Bhattacharjee JK
    Mol Gen Genet; 1975 Sep; 139(4):303-9. PubMed ID: 1102943
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli.
    Smith AJ; London J; Stanier RY
    J Bacteriol; 1967 Oct; 94(4):972-83. PubMed ID: 4963789
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Glucose and synaptosomal glutamate metabolism: studies with [15N]glutamate.
    Erecińska M; Zaleska MM; Nissim I; Nelson D; Dagani F; Yudkoff M
    J Neurochem; 1988 Sep; 51(3):892-902. PubMed ID: 2900879
    [TBL] [Abstract][Full Text] [Related]  

  • 45. METABOLISM OF PROPIONATE BY SHEEP LIVER. INTERRELATIONS OF PROPIONATE AND GLUTAMATE IN AGED MITOCHONDRIA.
    SMITH RM; OSBORNE-WHITE WS; RUSSELL GR
    Biochem J; 1965 May; 95(2):431-6. PubMed ID: 14340093
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two pathways of glutamate fermentation by anaerobic bacteria.
    Buckel W; Barker HA
    J Bacteriol; 1974 Mar; 117(3):1248-60. PubMed ID: 4813895
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carbon balance studies of glucose metabolism in rat cerebral cortical synaptosomes.
    Bauer U; Brand K
    J Neurochem; 1982 Jul; 39(1):239-43. PubMed ID: 6806441
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitrogen catabolite repression in a glutamate auxotroph of Saccharomyces cerevisiae.
    Kang L; Keeler ML; Dunlop PC; Roon RJ
    J Bacteriol; 1982 Jul; 151(1):29-35. PubMed ID: 6123500
    [TBL] [Abstract][Full Text] [Related]  

  • 49. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities.
    Novy V; Brunner B; Nidetzky B
    Microb Cell Fact; 2018 Apr; 17(1):59. PubMed ID: 29642896
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of Ca+ free medium on the two different tricarboxylate cycles in the rat brain cortex slices.
    Turský T; Lassánová M
    Physiol Bohemoslov; 1981; 30(1):11-7. PubMed ID: 6452633
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The fate of linoleic acid on Saccharomyces cerevisiae metabolism under aerobic and anaerobic conditions.
    Casu F; Pinu FR; Stefanello E; Greenwood DR; Villas-Bôas SG
    Metabolomics; 2018 Jul; 14(8):103. PubMed ID: 30830379
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of hexafluorodiethyl ether (flurothyl) on the metabolism of rat brain amino acids labelled by (U-14C)glucose.
    Reynolds AP; Gallagher BB
    Life Sci; 1973 Jul; 13(2):87-95. PubMed ID: 4751414
    [No Abstract]   [Full Text] [Related]  

  • 53. Ammonia assimilation by Saccharomyces cerevisiae.
    Magasanik B
    Eukaryot Cell; 2003 Oct; 2(5):827-9. PubMed ID: 14555464
    [No Abstract]   [Full Text] [Related]  

  • 54. Evidence for an incomplete reductive carboxylic acid cycle in Methanobacterium thermoautotrophicum.
    Fuchs G; Stupperich E
    Arch Microbiol; 1978 Jul; 118(1):121-5. PubMed ID: 29586
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Selective inhibition of the tricarboxylic acid cycle of GABAergic neurons with 3-nitropropionic acid in vivo.
    Hassel B; Sonnewald U
    J Neurochem; 1995 Sep; 65(3):1184-91. PubMed ID: 7643096
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 2-Oxoglutarate transport: a potential mechanism for regulating glutamate and tricarboxylic acid cycle intermediates in neurons.
    Shank RP; Bennett DJ
    Neurochem Res; 1993 Apr; 18(4):401-10. PubMed ID: 8097291
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Uptake of 14C-labelled succinate, L(+)-dihydroxysuccinate, L-monohydroxysuccinate, citrate, alpha-ketoglutarate, and D-glucose by washed mycelium of Claviceps purpurea.
    Taber WA
    Mycologia; 1971; 63(2):290-307. PubMed ID: 5576434
    [No Abstract]   [Full Text] [Related]  

  • 58. Intramitochondrial reductive carboxylation of 2-oxoglutarate in adipose tissue and its contribution to fatty acid synthesis.
    Lenartowicz E; Savina MV
    Int J Biochem; 1984; 16(12):1223-9. PubMed ID: 6530009
    [TBL] [Abstract][Full Text] [Related]  

  • 59. C- and N-catabolic utilization of tricarboxylic acid cycle-related amino acids by Scheffersomyces stipitis and other yeasts.
    Freese S; Vogts T; Speer F; Schäfer B; Passoth V; Klinner U
    Yeast; 2011 May; 28(5):375-90. PubMed ID: 21360752
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fate of glutamate carbon and nitrogen in isolated guinea-pig kidney-cortex tubules. Evidence for involvement of glutamate dehydrogenase in glutamine sythesis from glutamate.
    Baverel G; Genoux C; Forissier M; Pellet M
    Biochem J; 1980 Jun; 188(3):873-80. PubMed ID: 7470041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.