These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 9640333)
1. Stability and plasticity of neural crest patterning and branchial arch Hox code after extensive cephalic crest rotation. Hunt P; Clarke JD; Buxton P; Ferretti P; Thorogood P Dev Biol; 1998 Jun; 198(1):82-104. PubMed ID: 9640333 [TBL] [Abstract][Full Text] [Related]
2. Restoration of normal Hox code and branchial arch morphogenesis after extensive deletion of hindbrain neural crest. Hunt P; Ferretti P; Krumlauf R; Thorogood P Dev Biol; 1995 Apr; 168(2):584-97. PubMed ID: 7729590 [TBL] [Abstract][Full Text] [Related]
3. Homeobox genes and models for patterning the hindbrain and branchial arches. Hunt P; Whiting J; Muchamore I; Marshall H; Krumlauf R Dev Suppl; 1991; 1():187-96. PubMed ID: 1683802 [TBL] [Abstract][Full Text] [Related]
4. Dorsal hindbrain ablation results in rerouting of neural crest migration and changes in gene expression, but normal hyoid development. Saldivar JR; Sechrist JW; Krull CE; Ruffins S; Bronner-Fraser M Development; 1997 Jul; 124(14):2729-39. PubMed ID: 9226444 [TBL] [Abstract][Full Text] [Related]
5. Signalling between the hindbrain and paraxial tissues dictates neural crest migration pathways. Trainor PA; Sobieszczuk D; Wilkinson D; Krumlauf R Development; 2002 Jan; 129(2):433-42. PubMed ID: 11807035 [TBL] [Abstract][Full Text] [Related]
6. A signaling cascade involving endothelin-1, dHAND and msx1 regulates development of neural-crest-derived branchial arch mesenchyme. Thomas T; Kurihara H; Yamagishi H; Kurihara Y; Yazaki Y; Olson EN; Srivastava D Development; 1998 Aug; 125(16):3005-14. PubMed ID: 9671575 [TBL] [Abstract][Full Text] [Related]
7. Determination of the identity of the derivatives of the cephalic neural crest: incompatibility between Hox gene expression and lower jaw development. Couly G; Grapin-Botton A; Coltey P; Ruhin B; Le Douarin NM Development; 1998 Sep; 125(17):3445-59. PubMed ID: 9693148 [TBL] [Abstract][Full Text] [Related]
8. Development of cephalic neural crest cells in embryos of Lampetra japonica, with special reference to the evolution of the jaw. Horigome N; Myojin M; Ueki T; Hirano S; Aizawa S; Kuratani S Dev Biol; 1999 Mar; 207(2):287-308. PubMed ID: 10068464 [TBL] [Abstract][Full Text] [Related]
9. Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Prince V; Lumsden A Development; 1994 Apr; 120(4):911-23. PubMed ID: 7600967 [TBL] [Abstract][Full Text] [Related]
10. Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Trainor PA; Tam PP Development; 1995 Aug; 121(8):2569-82. PubMed ID: 7671820 [TBL] [Abstract][Full Text] [Related]
11. Retinoic acid stage-dependently alters the migration pattern and identity of hindbrain neural crest cells. Lee YM; Osumi-Yamashita N; Ninomiya Y; Moon CK; Eriksson U; Eto K Development; 1995 Mar; 121(3):825-37. PubMed ID: 7720586 [TBL] [Abstract][Full Text] [Related]
12. In ovo time-lapse analysis of chick hindbrain neural crest cell migration shows cell interactions during migration to the branchial arches. Kulesa PM; Fraser SE Development; 2000 Mar; 127(6):1161-72. PubMed ID: 10683170 [TBL] [Abstract][Full Text] [Related]
14. The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Smith A; Robinson V; Patel K; Wilkinson DG Curr Biol; 1997 Aug; 7(8):561-70. PubMed ID: 9259557 [TBL] [Abstract][Full Text] [Related]
15. Graded potential of neural crest to form cornea, sensory neurons and cartilage along the rostrocaudal axis. Lwigale PY; Conrad GW; Bronner-Fraser M Development; 2004 May; 131(9):1979-91. PubMed ID: 15056619 [TBL] [Abstract][Full Text] [Related]
16. Combined intrinsic and extrinsic influences pattern cranial neural crest migration and pharyngeal arch morphogenesis in axolotl. Cerny R; Meulemans D; Berger J; Wilsch-Bräuninger M; Kurth T; Bronner-Fraser M; Epperlein HH Dev Biol; 2004 Feb; 266(2):252-69. PubMed ID: 14738875 [TBL] [Abstract][Full Text] [Related]
17. The regeneration of the cephalic neural crest, a problem revisited: the regenerating cells originate from the contralateral or from the anterior and posterior neural fold. Couly G; Grapin-Botton A; Coltey P; Le Douarin NM Development; 1996 Nov; 122(11):3393-407. PubMed ID: 8951056 [TBL] [Abstract][Full Text] [Related]
18. Differentiation of avian craniofacial muscles: I. Patterns of early regulatory gene expression and myosin heavy chain synthesis. Noden DM; Marcucio R; Borycki AG; Emerson CP Dev Dyn; 1999 Oct; 216(2):96-112. PubMed ID: 10536051 [TBL] [Abstract][Full Text] [Related]
19. Locally released retinoic acid repatterns the first branchial arch cartilages in vivo. Plant MR; MacDonald ME; Grad LI; Ritchie SJ; Richman JM Dev Biol; 2000 Jun; 222(1):12-26. PubMed ID: 10885743 [TBL] [Abstract][Full Text] [Related]
20. Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton. Creuzet S; Couly G; Vincent C; Le Douarin NM Development; 2002 Sep; 129(18):4301-13. PubMed ID: 12183382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]