These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 9640348)
1. Proximal renal tubular peptide catabolism, ammonia excretion and tubular injury in patients with proteinuria: before and after lisinopril. Rustom R; Grime JS; Costigan M; Maltby P; Hughes A; Shenkin A; Critchley M; Bone JM Clin Sci (Lond); 1998 Apr; 94(4):425-30. PubMed ID: 9640348 [TBL] [Abstract][Full Text] [Related]
2. Oral sodium bicarbonate reduces proximal renal tubular peptide catabolism, ammoniogenesis, and tubular damage in renal patients. Rustom R; Grime JS; Costigan M; Maltby P; Hughes A; Taylor W; Shenkin A; Critchley M; Bone JM Ren Fail; 1998 Mar; 20(2):371-82. PubMed ID: 9574465 [TBL] [Abstract][Full Text] [Related]
3. Renal tubular peptide catabolism in chronic vascular rejection. Rustom R; Grime JS; Sells RA; Amara A; Jackson MJ; Shenkin A; Maltby P; Smith L; Hammad A; Brown M; Bone JM Ren Fail; 2001; 23(3-4):517-31. PubMed ID: 11499566 [TBL] [Abstract][Full Text] [Related]
4. Randomized controlled trial: lisinopril reduces proteinuria, ammonia, and renal polypeptide tubular catabolism in patients with chronic allograft nephropathy. Amara AB; Sharma A; Alexander JL; Alfirevic A; Mohiuddin A; Pirmohamed M; Close GL; Grime S; Maltby P; Shawki H; Heyworth S; Shenkin A; Smith L; Sharma AK; Hammad A; Rustom R Transplantation; 2010 Jan; 89(1):104-14. PubMed ID: 20061926 [TBL] [Abstract][Full Text] [Related]
5. Tubular peptide hypermetabolism and urinary ammonia in chronic renal failure in man: a maladaptive response? Rustom R; Maltby P; Grime JS; Hughes A; Costigan M; Shenkin A; Critchley M; Bone JM Nephron; 1998; 79(3):306-11. PubMed ID: 9678431 [TBL] [Abstract][Full Text] [Related]
6. Tubular metabolism of aprotinin 99mTc and urinary ammonia: effects of proteinuria. Rustom R; Jackson MJ; Critchley M; Bone JM Miner Electrolyte Metab; 1992; 18(2-5):108-12. PubMed ID: 1281513 [TBL] [Abstract][Full Text] [Related]
7. Proteinuria and renal tubular damage: urinary N-acetyl-beta-D-glucosaminidase and isoenzymes in dissimilar renal disease. Rustom R; Costigan M; Shenkin A; Bone JM Am J Nephrol; 1998; 18(3):179-85. PubMed ID: 9627032 [TBL] [Abstract][Full Text] [Related]
8. Urinary N-acetyl-beta-glucosaminidase excretion is a marker of tubular cell dysfunction and a predictor of outcome in primary glomerulonephritis. Bazzi C; Petrini C; Rizza V; Arrigo G; Napodano P; Paparella M; D'Amico G Nephrol Dial Transplant; 2002 Nov; 17(11):1890-6. PubMed ID: 12401843 [TBL] [Abstract][Full Text] [Related]
9. Origin and significance of urinary N-acetyl-beta, D-glucosaminidase (NAG) in renal patients with proteinuria. Costigan MG; Rustom R; Bone JM; Shenkin A Clin Chim Acta; 1996 Nov; 255(2):133-44. PubMed ID: 8937756 [TBL] [Abstract][Full Text] [Related]
10. Effects of anti-proteinuric therapy with angiotensin-converting-enzyme inhibition on renal protein catabolism in the adriamycin-induced nephrotic rat. Haas M; de Boer E; de Jong PE; Moolenaar F; Meijer DK; de Zeeuw D Clin Sci (Lond); 2003 Jul; 105(1):51-7. PubMed ID: 12636872 [TBL] [Abstract][Full Text] [Related]
11. Urinary excretion of glutathione S transferases alpha and pi in patients with proteinuria: reflection of the site of tubular injury. Branten AJ; Mulder TP; Peters WH; Assmann KJ; Wetzels JF Nephron; 2000 Jun; 85(2):120-6. PubMed ID: 10867517 [TBL] [Abstract][Full Text] [Related]
12. [The effect of angiotensin-converting enzyme inhibitors on proteinuria in chronic glomerulonephritis]. Erley CM; Komini E; Nicaeus T; Braun N; Wolf S; Risler T Dtsch Med Wochenschr; 1994 Jan; 119(4):89-95. PubMed ID: 8299527 [TBL] [Abstract][Full Text] [Related]
13. Subclinical tubular injury in HIV-infected individuals on antiretroviral therapy: a cross-sectional analysis. Hall AM; Edwards SG; Lapsley M; Connolly JO; Chetty K; O'Farrell S; Unwin RJ; Williams IG Am J Kidney Dis; 2009 Dec; 54(6):1034-42. PubMed ID: 19783343 [TBL] [Abstract][Full Text] [Related]
14. Observations on the early renal uptake and later tubular metabolism of radiolabelled aprotinin (Trasylol) in man: theoretical and practical considerations. Rustom R; Grime JS; Maltby P; Stockdale HR; Critchley M; Bone JM Clin Sci (Lond); 1993 Feb; 84(2):231-5. PubMed ID: 7679959 [TBL] [Abstract][Full Text] [Related]
15. The renoprotective properties of angiotensin-converting enzyme inhibitors in a chronic model of membranous nephropathy are solely due to the inhibition of angiotensin II: evidence based on comparative studies with a receptor antagonist. Zoja C; Donadelli R; Corna D; Testa D; Facchinetti D; Maffi R; Luzzana E; Colosio V; Bertani T; Remuzzi G Am J Kidney Dis; 1997 Feb; 29(2):254-64. PubMed ID: 9016898 [TBL] [Abstract][Full Text] [Related]
16. Acute haemodynamic and proteinuric effects of prednisolone in patients with a nephrotic syndrome. Reichert LJ; Koene RA; Wetzels JF Nephrol Dial Transplant; 1999 Jan; 14(1):91-7. PubMed ID: 10052484 [TBL] [Abstract][Full Text] [Related]
18. Effects of dual blockade of the renin-angiotensin system in primary proteinuric nephropathies. Luño J; Barrio V; Goicoechea MA; González C; de Vinuesa SG; Gómez F; Bernis C; Espinosa M; Ahijado F; Gómez J; Escalada P Kidney Int Suppl; 2002 Dec; (82):S47-52. PubMed ID: 12410855 [TBL] [Abstract][Full Text] [Related]
19. Additive antiproteinuric effect of angiotensin-converting enzyme inhibition and non-steroidal anti-inflammatory drug therapy: a clue to the mechanism of action. Heeg JE; de Jong PE; de Zeeuw D Clin Sci (Lond); 1991 Sep; 81(3):367-72. PubMed ID: 1655338 [TBL] [Abstract][Full Text] [Related]
20. Beta 2-glycoprotein-1 (apolipoprotein H) excretion and renal tubular malfunction in diabetic patients without clinical proteinuria. Lapsley M; Flynn FV; Sansom PA J Clin Pathol; 1993 May; 46(5):465-9. PubMed ID: 8320329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]