These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 9641556)

  • 1. Characterization of the phencyclidine-induced increase in prefrontal cortical dopamine metabolism in the rat.
    Umino A; Takahashi K; Nishikawa T
    Br J Pharmacol; 1998 May; 124(2):377-85. PubMed ID: 9641556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of haloperidol on phencyclidine-induced reduction in substance P contents in rat brain regions.
    Shirayama Y; Mitsushio H; Takahashi K; Nishikawa T
    Synapse; 2000 Mar; 35(4):292-9. PubMed ID: 10657039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clozapine, but not haloperidol, prevents the functional hyperactivity of N-methyl-D-aspartate receptors in rat cortical neurons induced by subchronic administration of phencyclidine.
    Arvanov VL; Wang RY
    J Pharmacol Exp Ther; 1999 May; 289(2):1000-6. PubMed ID: 10215680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha-noradrenergic receptor modulation of the phencyclidine- and delta9-tetrahydrocannabinol-induced increases in dopamine utilization in rat prefrontal cortex.
    Jentsch JD; Wise A; Katz Z; Roth RH
    Synapse; 1998 Jan; 28(1):21-6. PubMed ID: 9414014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendritic glutamate-induced bursting in the prefrontal cortex: further characterization and effects of phencyclidine.
    Shi WX; Zhang XX
    J Pharmacol Exp Ther; 2003 May; 305(2):680-7. PubMed ID: 12606677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of interactions between phencyclidine and amphetamine in rodent prefrontal cortex and striatum: implications in NMDA/glycine-site-mediated dopaminergic dysregulation and dopamine transporter function.
    Sershen H; Balla A; Aspromonte JM; Xie S; Cooper TB; Javitt DC
    Neurochem Int; 2008 Jan; 52(1-2):119-29. PubMed ID: 17716783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of a dysfunctional dopamine-D1/N-methyl-d-aspartate-NR1 and Ca2+/calmodulin-dependent protein kinase II pathway in the impairment of latent learning in a model of schizophrenia induced by phencyclidine.
    Mouri A; Noda Y; Noda A; Nakamura T; Tokura T; Yura Y; Nitta A; Furukawa H; Nabeshima T
    Mol Pharmacol; 2007 Jun; 71(6):1598-609. PubMed ID: 17344353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the inhibition of excitatory amino acid-induced neurotransmitter release in the rat striatum by phencyclidine-like drugs.
    Snell LD; Johnson KM
    J Pharmacol Exp Ther; 1986 Sep; 238(3):938-46. PubMed ID: 2875174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of NMDA receptor inhibition by phencyclidine on the neuronal differentiation of PC12 cells.
    Lee E; Williams Z; Goodman CB; Oriaku ET; Harris C; Thomas M; Soliman KF
    Neurotoxicology; 2006 Jul; 27(4):558-66. PubMed ID: 16580729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antagonism of N-methyl-D-aspartate-induced transmitter release in the rat striatum by phencyclidine-like drugs and its relationship to turning behavior.
    Snell LD; Johnson KM
    J Pharmacol Exp Ther; 1985 Oct; 235(1):50-7. PubMed ID: 2864436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substitution for PCP, disruption of prepulse inhibition and hyperactivity induced by N-methyl-D-aspartate receptor antagonists: preferential involvement of the NR2B rather than NR2A subunit.
    Chaperon F; Müller W; Auberson YP; Tricklebank MD; Neijt HC
    Behav Pharmacol; 2003 Sep; 14(5-6):477-87. PubMed ID: 14501261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of glutamate neurotransmission in the prefrontal cortex sustains the motoric and dopaminergic effects of phencyclidine.
    Takahata R; Moghaddam B
    Neuropsychopharmacology; 2003 Jun; 28(6):1117-24. PubMed ID: 12700703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of gamma-aminobutyric acid neurotransmission in phencyclidine-induced dopamine release in the medial prefrontal cortex.
    Yonezawa Y; Kuroki T; Kawahara T; Tashiro N; Uchimura H
    Eur J Pharmacol; 1998 Jan; 341(1):45-56. PubMed ID: 9489855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of phencyclidine and methamphetamine on dopamine metabolism in rat frontal cortex and striatum as revealed by in vivo dialysis.
    Nishijima K; Kashiwa A; Hashimoto A; Iwama H; Umino A; Nishikawa T
    Synapse; 1996 Apr; 22(4):304-12. PubMed ID: 8867025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blockade of N-methyl-D-aspartate receptors by phencyclidine causes the loss of corticostriatal neurons.
    Wang C; Anastasio N; Popov V; Leday A; Johnson KM
    Neuroscience; 2004; 125(2):473-83. PubMed ID: 15062989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of striatal quinolinate neurotoxicity by elevation of endogenous brain kynurenic acid.
    Harris CA; Miranda AF; Tanguay JJ; Boegman RJ; Beninger RJ; Jhamandas K
    Br J Pharmacol; 1998 May; 124(2):391-9. PubMed ID: 9641558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional effects of MK-801 on dopamine release: effects of competitive NMDA or 5-HT2A receptor blockade.
    Schmidt CJ; Fadayel GM
    J Pharmacol Exp Ther; 1996 Jun; 277(3):1541-9. PubMed ID: 8667221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A study on the pharmacological action of phencyclidine].
    Ohmori T
    Hokkaido Igaku Zasshi; 1993 Mar; 68(2):205-13. PubMed ID: 8099562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypofunctional glutamatergic neurotransmission in the prefrontal cortex is involved in the emotional deficit induced by repeated treatment with phencyclidine in mice: implications for abnormalities of glutamate release and NMDA-CaMKII signaling.
    Murai R; Noda Y; Matsui K; Kamei H; Mouri A; Matsuba K; Nitta A; Furukawa H; Nabeshima T
    Behav Brain Res; 2007 Jun; 180(2):152-60. PubMed ID: 17451820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clozapine but not haloperidol treatment reverses sub-chronic phencyclidine-induced disruption of conditional discrimination performance.
    Dunn MJ; Killcross S
    Behav Brain Res; 2006 Dec; 175(2):271-7. PubMed ID: 17027093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.