These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 9641699)
1. Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Liu Y; Sato T; O'Rourke B; Marban E Circulation; 1998 Jun; 97(24):2463-9. PubMed ID: 9641699 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial ATP-dependent potassium channels. Viable candidate effectors of ischemic preconditioning. Liu Y; Sato T; Seharaseyon J; Szewczyk A; O'Rourke B; Marbán E Ann N Y Acad Sci; 1999 Jun; 874():27-37. PubMed ID: 10415518 [TBL] [Abstract][Full Text] [Related]
3. Pharmacological and histochemical distinctions between molecularly defined sarcolemmal KATP channels and native cardiac mitochondrial KATP channels. Hu H; Sato T; Seharaseyon J; Liu Y; Johns DC; O'Rourke B; Marbán E Mol Pharmacol; 1999 Jun; 55(6):1000-5. PubMed ID: 10347240 [TBL] [Abstract][Full Text] [Related]
4. Selective pharmacological agents implicate mitochondrial but not sarcolemmal K(ATP) channels in ischemic cardioprotection. Sato T; Sasaki N; Seharaseyon J; O'Rourke B; Marbán E Circulation; 2000 May; 101(20):2418-23. PubMed ID: 10821820 [TBL] [Abstract][Full Text] [Related]
5. Contribution of both the sarcolemmal K(ATP) and mitochondrial K(ATP) channels to infarct size limitation by K(ATP) channel openers: differences from preconditioning in the role of sarcolemmal K(ATP) channels. Tanno M; Miura T; Tsuchida A; Miki T; Nishino Y; Ohnuma Y; Shimamoto K Naunyn Schmiedebergs Arch Pharmacol; 2001 Sep; 364(3):226-32. PubMed ID: 11521165 [TBL] [Abstract][Full Text] [Related]
6. Molecular composition of mitochondrial ATP-sensitive potassium channels probed by viral Kir gene transfer. Seharaseyon J; Ohler A; Sasaki N; Fraser H; Sato T; Johns DC; O'Rourke B; Marbán E J Mol Cell Cardiol; 2000 Nov; 32(11):1923-30. PubMed ID: 11185581 [TBL] [Abstract][Full Text] [Related]
7. Evidence for mitochondrial K ATP channels as effectors of human myocardial preconditioning. Ghosh S; Standen NB; Galiñanes M Cardiovasc Res; 2000 Mar; 45(4):934-40. PubMed ID: 10728419 [TBL] [Abstract][Full Text] [Related]
8. Diazoxide opens the mitochondrial permeability transition pore and alters Ca2+ transients in rat ventricular myocytes. Katoh H; Nishigaki N; Hayashi H Circulation; 2002 Jun; 105(22):2666-71. PubMed ID: 12045174 [TBL] [Abstract][Full Text] [Related]
9. Bepridil, an antiarrhythmic drug, opens mitochondrial KATP channels, blocks sarcolemmal KATP channels, and confers cardioprotection. Sato T; Costa AD; Saito T; Ogura T; Ishida H; Garlid KD; Nakaya H J Pharmacol Exp Ther; 2006 Jan; 316(1):182-8. PubMed ID: 16174795 [TBL] [Abstract][Full Text] [Related]
10. Integrated pharmacological preconditioning in combination with adenosine, a mitochondrial KATP channel opener and a nitric oxide donor. Uchiyama Y; Otani H; Okada T; Uchiyama T; Ninomiya H; Kido M; Imamura H; Nakao S; Shingu K J Thorac Cardiovasc Surg; 2003 Jul; 126(1):148-59. PubMed ID: 12878950 [TBL] [Abstract][Full Text] [Related]
11. Activation of mitochondrial ATP-dependent potassium channels by nitric oxide. Sasaki N; Sato T; Ohler A; O'Rourke B; Marbán E Circulation; 2000 Feb; 101(4):439-45. PubMed ID: 10653837 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Murata M; Akao M; O'Rourke B; Marbán E Circ Res; 2001 Nov; 89(10):891-8. PubMed ID: 11701616 [TBL] [Abstract][Full Text] [Related]
13. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Garlid KD; Paucek P; Yarov-Yarovoy V; Murray HN; Darbenzio RB; D'Alonzo AJ; Lodge NJ; Smith MA; Grover GJ Circ Res; 1997 Dec; 81(6):1072-82. PubMed ID: 9400389 [TBL] [Abstract][Full Text] [Related]
14. Early opening of sarcolemmal ATP-sensitive potassium channels is not a key step in PKC-mediated cardioprotection. Brennan S; Jackson R; Patel M; Sims MW; Hudman D; Norman RI; Lodwick D; Rainbow RD J Mol Cell Cardiol; 2015 Feb; 79():42-53. PubMed ID: 25450614 [TBL] [Abstract][Full Text] [Related]
15. Amiodarone inhibits sarcolemmal but not mitochondrial KATP channels in Guinea pig ventricular cells. Sato T; Takizawa T; Saito T; Kobayashi S; Hara Y; Nakaya H J Pharmacol Exp Ther; 2003 Dec; 307(3):955-60. PubMed ID: 14534361 [TBL] [Abstract][Full Text] [Related]
16. Ischaemic preconditioning and a mitochondrial KATP channel opener both produce cardioprotection accompanied by F1F0-ATPase inhibition in early ischaemia. Ala-Rämi A; Ylitalo KV; Hassinen IE Basic Res Cardiol; 2003 Jul; 98(4):250-8. PubMed ID: 12835954 [TBL] [Abstract][Full Text] [Related]
17. Lidocaine and mexiletine inhibit mitochondrial oxidation in rat ventricular myocytes. Tsutsumi Y; Oshita S; Kawano T; Kitahata H; Tomiyama Y; Kuroda Y; Nakaya Y Anesthesiology; 2001 Sep; 95(3):766-70. PubMed ID: 11575552 [TBL] [Abstract][Full Text] [Related]
18. Ischemic preconditioning protection against stunning in conscious diabetic sheep: role of glucose, insulin, sarcolemmal and mitochondrial KATP channels. del Valle HF; Lascano EC; Negroni JA Cardiovasc Res; 2002 Aug; 55(3):642-59. PubMed ID: 12160962 [TBL] [Abstract][Full Text] [Related]
19. MCC-134, a single pharmacophore, opens surface ATP-sensitive potassium channels, blocks mitochondrial ATP-sensitive potassium channels, and suppresses preconditioning. Sasaki N; Murata M; Guo Y; Jo SH; Ohler A; Akao M; O'Rourke B; Xiao RP; Bolli R; Marbán E Circulation; 2003 Mar; 107(8):1183-8. PubMed ID: 12615799 [TBL] [Abstract][Full Text] [Related]
20. Isosteviol Sensitizes sarcKATP Channels towards Pinacidil and Potentiates Mitochondrial Uncoupling of Diazoxide in Guinea Pig Ventricular Myocytes. Fan Z; Wen T; Chen Y; Huang L; Lin W; Yin C; Tan W Oxid Med Cell Longev; 2016; 2016():6362812. PubMed ID: 26949448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]