These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 9642048)
1. Conformational changes of the Tet repressor induced by tetracycline trapping. Orth P; Cordes F; Schnappinger D; Hillen W; Saenger W; Hinrichs W J Mol Biol; 1998 Jun; 279(2):439-47. PubMed ID: 9642048 [TBL] [Abstract][Full Text] [Related]
2. Tetracycline-chelated Mg2+ ion initiates helix unwinding in Tet repressor induction. Orth P; Saenger W; Hinrichs W Biochemistry; 1999 Jan; 38(1):191-8. PubMed ID: 9890898 [TBL] [Abstract][Full Text] [Related]
3. Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Orth P; Schnappinger D; Hillen W; Saenger W; Hinrichs W Nat Struct Biol; 2000 Mar; 7(3):215-9. PubMed ID: 10700280 [TBL] [Abstract][Full Text] [Related]
4. Tet repressor induction by tetracycline: a molecular dynamics, continuum electrostatics, and crystallographic study. Aleksandrov A; Schuldt L; Hinrichs W; Simonson T J Mol Biol; 2008 May; 378(4):898-912. PubMed ID: 18395746 [TBL] [Abstract][Full Text] [Related]
5. Combinations of the alpha-helix-turn-alpha-helix motif of TetR with respective residues from LacI or 434Cro: DNA recognition, inducer binding, and urea-dependent denaturation. Backes H; Berens C; Helbl V; Walter S; Schmid FX; Hillen W Biochemistry; 1997 May; 36(18):5311-22. PubMed ID: 9154913 [TBL] [Abstract][Full Text] [Related]
6. Kinetic and thermodynamic studies of tet repressor-tetracycline interaction. Kedracka-Krok S; Gorecki A; Bonarek P; Wasylewski Z Biochemistry; 2005 Jan; 44(3):1037-46. PubMed ID: 15654760 [TBL] [Abstract][Full Text] [Related]
7. The complex formed between Tet repressor and tetracycline-Mg2+ reveals mechanism of antibiotic resistance. Kisker C; Hinrichs W; Tovar K; Hillen W; Saenger W J Mol Biol; 1995 Mar; 247(2):260-80. PubMed ID: 7707374 [TBL] [Abstract][Full Text] [Related]
8. Structural origins for selectivity and specificity in an engineered bacterial repressor-inducer pair. Klieber MA; Scholz O; Lochner S; Gmeiner P; Hillen W; Muller YA FEBS J; 2009 Oct; 276(19):5610-21. PubMed ID: 19712110 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional structure of the DNA-binding domain of the fructose repressor from Escherichia coli by 1H and 15N NMR. Penin F; Geourjon C; Montserret R; Böckmann A; Lesage A; Yang YS; Bonod-Bidaud C; Cortay JC; Nègre D; Cozzone AJ; Deléage G J Mol Biol; 1997 Jul; 270(3):496-510. PubMed ID: 9237914 [TBL] [Abstract][Full Text] [Related]
10. Determinants of protein-protein recognition by four helix bundles: changing the dimerization specificity of Tet repressor. Schnappinger D; Schubert P; Pfleiderer K; Hillen W EMBO J; 1998 Jan; 17(2):535-43. PubMed ID: 9430644 [TBL] [Abstract][Full Text] [Related]
11. Observing conformational and activity changes of tet repressor in vivo. Tiebel B; Garke K; Hillen W Nat Struct Biol; 2000 Jun; 7(6):479-81. PubMed ID: 10881195 [TBL] [Abstract][Full Text] [Related]
12. Conformational changes of purine repressor DNA-binding domain upon complexation with DNA. Nagadoi A; Nakazawa K; Morikawa S; Nakamura H; Sampei G; Mizobuchi K; Yamamoto H; Schumacher MA; Brennan RG; Nishimura Y Nucleic Acids Symp Ser; 1995; (34):63-4. PubMed ID: 8841553 [TBL] [Abstract][Full Text] [Related]
14. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties. Karaivanova IM; Weigel P; Takahashi M; Fort C; Versavaud A; Van Duyne G; Charlier D; Hallet JN; Glansdorff N; Sakanyan V J Mol Biol; 1999 Aug; 291(4):843-55. PubMed ID: 10452892 [TBL] [Abstract][Full Text] [Related]
15. Raman spectroscopic analysis of Tet repressor-operator DNA interaction in deuterium oxide. Krafft C; Hinrichs W; Orth P; Saenger W; Welfle H Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):239-50. PubMed ID: 9551655 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of Tet repressor induction by tetracyclines: length compensates for sequence in the alpha8-alpha9 loop. Scholz O; Kintrup M; Reich M; Hillen W J Mol Biol; 2001 Jul; 310(5):979-86. PubMed ID: 11502007 [TBL] [Abstract][Full Text] [Related]
17. Structure and function of the arginine repressor-operator complex from Bacillus subtilis. Garnett JA; Marincs F; Baumberg S; Stockley PG; Phillips SE J Mol Biol; 2008 May; 379(2):284-98. PubMed ID: 18455186 [TBL] [Abstract][Full Text] [Related]
18. The 1.6 A crystal structure of the AraC sugar-binding and dimerization domain complexed with D-fucose. Soisson SM; MacDougall-Shackleton B; Schleif R; Wolberger C J Mol Biol; 1997 Oct; 273(1):226-37. PubMed ID: 9367758 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of the effector-binding domain of the trehalose-repressor of Escherichia coli, a member of the LacI family, in its complexes with inducer trehalose-6-phosphate and noninducer trehalose. Hars U; Horlacher R; Boos W; Welte W; Diederichs K Protein Sci; 1998 Dec; 7(12):2511-21. PubMed ID: 9865945 [TBL] [Abstract][Full Text] [Related]
20. Structure of the oligomerization and L-arginine binding domain of the arginine repressor of Escherichia coli. Van Duyne GD; Ghosh G; Maas WK; Sigler PB J Mol Biol; 1996 Feb; 256(2):377-91. PubMed ID: 8594204 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]