BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9642074)

  • 1. Inter-helical interactions in the leucine zipper coiled coil dimer: pH and salt dependence of coupling energy between charged amino acids.
    Krylov D; Barchi J; Vinson C
    J Mol Biol; 1998 Jun; 279(4):959-72. PubMed ID: 9642074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a leucine zipper coiled coil stabilized 1.4 kcal mol-1 by phosphorylation of a serine in the e position.
    Szilák L; Moitra J; Vinson C
    Protein Sci; 1997 Jun; 6(6):1273-83. PubMed ID: 9194187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extremely fast folding of a very stable leucine zipper with a strengthened hydrophobic core and lacking electrostatic interactions between helices.
    Dürr E; Jelesarov I; Bosshard HR
    Biochemistry; 1999 Jan; 38(3):870-80. PubMed ID: 9893981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse electrostatic effect: electrostatic repulsion in the unfolded state stabilizes a leucine zipper.
    Marti DN; Bosshard HR
    Biochemistry; 2004 Oct; 43(39):12436-47. PubMed ID: 15449933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of 100 homo and heterotypic coiled-coil a-a' pairs for ten amino acids (A, L, I, V, N, K, S, T, E, and R).
    Acharya A; Rishi V; Vinson C
    Biochemistry; 2006 Sep; 45(38):11324-32. PubMed ID: 16981692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper).
    Jelesarov I; Dürr E; Thomas RM; Bosshard HR
    Biochemistry; 1998 May; 37(20):7539-50. PubMed ID: 9585569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A thermodynamic scale for leucine zipper stability and dimerization specificity: e and g interhelical interactions.
    Krylov D; Mikhailenko I; Vinson C
    EMBO J; 1994 Jun; 13(12):2849-61. PubMed ID: 8026470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation, positional, additivity, and oligomerization-state effects of interhelical ion pairs in alpha-helical coiled-coils.
    Kohn WD; Kay CM; Hodges RS
    J Mol Biol; 1998 Nov; 283(5):993-1012. PubMed ID: 9799639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A heterodimerizing leucine zipper coiled coil system for examining the specificity of a position interactions: amino acids I, V, L, N, A, and K.
    Acharya A; Ruvinov SB; Gal J; Moll JR; Vinson C
    Biochemistry; 2002 Dec; 41(48):14122-31. PubMed ID: 12450375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interhelical ion pairing in coiled coils: solution structure of a heterodimeric leucine zipper and determination of pKa values of Glu side chains.
    Marti DN; Jelesarov I; Bosshard HR
    Biochemistry; 2000 Oct; 39(42):12804-18. PubMed ID: 11041845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attractive interhelical electrostatic interactions in the proline- and acidic-rich region (PAR) leucine zipper subfamily preclude heterodimerization with other basic leucine zipper subfamilies.
    Moll JR; Olive M; Vinson C
    J Biol Chem; 2000 Nov; 275(44):34826-32. PubMed ID: 10942764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein destabilization by electrostatic repulsions in the two-stranded alpha-helical coiled-coil/leucine zipper.
    Kohn WD; Kay CM; Hodges RS
    Protein Sci; 1995 Feb; 4(2):237-50. PubMed ID: 7757012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface salt bridges, double-mutant cycles, and protein stability: an experimental and computational analysis of the interaction of the Asp 23 side chain with the N-terminus of the N-terminal domain of the ribosomal protein l9.
    Luisi DL; Snow CD; Lin JJ; Hendsch ZS; Tidor B; Raleigh DP
    Biochemistry; 2003 Jun; 42(23):7050-60. PubMed ID: 12795600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d".
    Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS
    J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Very rapid, ionic strength-dependent association and folding of a heterodimeric leucine zipper.
    Wendt H; Leder L; Härmä H; Jelesarov I; Baici A; Bosshard HR
    Biochemistry; 1997 Jan; 36(1):204-13. PubMed ID: 8993335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leucine is the most stabilizing aliphatic amino acid in the d position of a dimeric leucine zipper coiled coil.
    Moitra J; Szilák L; Krylov D; Vinson C
    Biochemistry; 1997 Oct; 36(41):12567-73. PubMed ID: 9376362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the mechanism of heterodimerization from the 1H-NMR solution structure of the c-Myc-Max heterodimeric leucine zipper.
    Lavigne P; Crump MP; Gagné SM; Hodges RS; Kay CM; Sykes BD
    J Mol Biol; 1998 Aug; 281(1):165-81. PubMed ID: 9680483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental identification of homodimerizing B-ZIP families in Homo sapiens.
    Acharya A; Rishi V; Moll J; Vinson C
    J Struct Biol; 2006 Aug; 155(2):130-9. PubMed ID: 16725346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A parallel coiled-coil tetramer with offset helices.
    Liu J; Deng Y; Zheng Q; Cheng CS; Kallenbach NR; Lu M
    Biochemistry; 2006 Dec; 45(51):15224-31. PubMed ID: 17176044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic interactions in leucine zippers: thermodynamic analysis of the contributions of Glu and His residues and the effect of mutating salt bridges.
    Marti DN; Bosshard HR
    J Mol Biol; 2003 Jul; 330(3):621-37. PubMed ID: 12842476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.