These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 9642081)
1. DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. Travers A; Muskhelishvili G J Mol Biol; 1998 Jun; 279(5):1027-43. PubMed ID: 9642081 [TBL] [Abstract][Full Text] [Related]
2. The effect of the DNA conformation on the rate of NtrC activated transcription of Escherichia coli RNA polymerase.sigma(54) holoenzyme. Schulz A; Langowski J; Rippe K J Mol Biol; 2000 Jul; 300(4):709-25. PubMed ID: 10891265 [TBL] [Abstract][Full Text] [Related]
3. Activation of transcription initiation from a stable RNA promoter by a Fis protein-mediated DNA structural transmission mechanism. Opel ML; Aeling KA; Holmes WM; Johnson RC; Benham CJ; Hatfield GW Mol Microbiol; 2004 Jul; 53(2):665-74. PubMed ID: 15228542 [TBL] [Abstract][Full Text] [Related]
4. The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex. Schröder O; Wagner R J Mol Biol; 2000 May; 298(5):737-48. PubMed ID: 10801345 [TBL] [Abstract][Full Text] [Related]
5. FIS modulates the kinetics of successive interactions of RNA polymerase with the core and upstream regions of the tyrT promoter. Pemberton IK; Muskhelishvili G; Travers AA; Buckle M J Mol Biol; 2002 May; 318(3):651-63. PubMed ID: 12054813 [TBL] [Abstract][Full Text] [Related]
6. Influence of DNA geometry on transcriptional activation in Escherichia coli. Déthiollaz S; Eichenberger P; Geiselmann J EMBO J; 1996 Oct; 15(19):5449-58. PubMed ID: 8895588 [TBL] [Abstract][Full Text] [Related]
7. Conformational changes of the upstream DNA mediated by H-NS and FIS regulate E. coli RrnB P1 promoter activity. Afflerbach H; Schröder O; Wagner R J Mol Biol; 1999 Feb; 286(2):339-53. PubMed ID: 9973555 [TBL] [Abstract][Full Text] [Related]
8. Activation of RpoS-dependent proP P2 transcription by the Fis protein in vitro. Xu J; Johnson RC J Mol Biol; 1997 Jul; 270(3):346-59. PubMed ID: 9237902 [TBL] [Abstract][Full Text] [Related]
9. FIS activates sequential steps during transcription initiation at a stable RNA promoter. Muskhelishvili G; Buckle M; Heumann H; Kahmann R; Travers AA EMBO J; 1997 Jun; 16(12):3655-65. PubMed ID: 9218806 [TBL] [Abstract][Full Text] [Related]
10. sigma factor selectivity of Escherichia coli RNA polymerase: role for CRP, IHF and lrp transcription factors. Colland F; Barth M; Hengge-Aronis R; Kolb A EMBO J; 2000 Jun; 19(12):3028-37. PubMed ID: 10856246 [TBL] [Abstract][Full Text] [Related]
11. Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes. Vuthoori S; Bowers CW; McCracken A; Dombroski AJ; Hinton DM J Mol Biol; 2001 Jun; 309(3):561-72. PubMed ID: 11397080 [TBL] [Abstract][Full Text] [Related]
12. FIS activates glnAp2 in Escherichia coli: role of a DNA bend centered at -55, upstream of the transcription start site. Huo YX; Nan BY; You CH; Tian ZX; Kolb A; Wang YP FEMS Microbiol Lett; 2006 Apr; 257(1):99-105. PubMed ID: 16553838 [TBL] [Abstract][Full Text] [Related]
13. Transcription activation at the Escherichia coli melAB promoter: interactions of MelR with its DNA target site and with domain 4 of the RNA polymerase sigma subunit. Grainger DC; Webster CL; Belyaeva TA; Hyde EI; Busby SJ Mol Microbiol; 2004 Mar; 51(5):1297-309. PubMed ID: 14982625 [TBL] [Abstract][Full Text] [Related]
14. Sequences in sigma(54) region I required for binding to early melted DNA and their involvement in sigma-DNA isomerisation. Gallegos MT; Buck M J Mol Biol; 2000 Apr; 297(4):849-59. PubMed ID: 10736222 [TBL] [Abstract][Full Text] [Related]
15. Aromatic amino acids in region 2.3 of Escherichia coli sigma 70 participate collectively in the formation of an RNA polymerase-promoter open complex. Panaghie G; Aiyar SE; Bobb KL; Hayward RS; de Haseth PL J Mol Biol; 2000 Jun; 299(5):1217-30. PubMed ID: 10873447 [TBL] [Abstract][Full Text] [Related]
16. Molecular anatomy of a transcription activation patch: FIS-RNA polymerase interactions at the Escherichia coli rrnB P1 promoter. Bokal AJ; Ross W; Gaal T; Johnson RC; Gourse RL EMBO J; 1997 Jan; 16(1):154-62. PubMed ID: 9009276 [TBL] [Abstract][Full Text] [Related]
17. Kinetic studies and structural models of the association of E. coli sigma(70) RNA polymerase with the lambdaP(R) promoter: large scale conformational changes in forming the kinetically significant intermediates. Saecker RM; Tsodikov OV; McQuade KL; Schlax PE; Capp MW; Record MT J Mol Biol; 2002 Jun; 319(3):649-71. PubMed ID: 12054861 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional organization and dynamic expression of the hbpCAD genes, which encode the first three enzymes for 2-hydroxybiphenyl degradation in Pseudomonas azelaica HBP1. Jaspers MC; Schmid A; Sturme MH; Goslings DA; Kohler HP; Roelof Van Der Meer J J Bacteriol; 2001 Jan; 183(1):270-9. PubMed ID: 11114926 [TBL] [Abstract][Full Text] [Related]
19. Regulatory sequences in sigma 54 localise near the start of DNA melting. Wigneshweraraj SR; Chaney MK; Ishihama A; Buck M J Mol Biol; 2001 Mar; 306(4):681-701. PubMed ID: 11243780 [TBL] [Abstract][Full Text] [Related]
20. Novel protein--protein interaction between Escherichia coli SoxS and the DNA binding determinant of the RNA polymerase alpha subunit: SoxS functions as a co-sigma factor and redeploys RNA polymerase from UP-element-containing promoters to SoxS-dependent promoters during oxidative stress. Shah IM; Wolf RE J Mol Biol; 2004 Oct; 343(3):513-32. PubMed ID: 15465042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]