BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 9642115)

  • 1. Phagocyte NADPH oxidase p67-phox possesses a novel carboxylterminal binding site for the GTPases Rac2 and Cdc42.
    Faris SL; Rinckel LA; Huang J; Hong YR; Kleinberg ME
    Biochem Biophys Res Commun; 1998 Jun; 247(2):271-6. PubMed ID: 9642115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rac1 disrupts p67phox/p40phox binding: a novel role for Rac in NADPH oxidase activation.
    Rinckel LA; Faris SL; Hitt ND; Kleinberg ME
    Biochem Biophys Res Commun; 1999 Sep; 263(1):118-22. PubMed ID: 10486263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane association of Rac is required for high activity of the respiratory burst oxidase.
    Kreck ML; Freeman JL; Abo A; Lambeth JD
    Biochemistry; 1996 Dec; 35(49):15683-92. PubMed ID: 8961931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the small GTPase Rac in p22phox-dependent NADPH oxidases.
    Miyano K; Sumimoto H
    Biochimie; 2007 Sep; 89(9):1133-44. PubMed ID: 17583407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remarkable stabilization of neutrophil NADPH oxidase using RacQ61L and a p67phox-p47phox fusion protein.
    Miyano K; Fukuda H; Ebisu K; Tamura M
    Biochemistry; 2003 Jan; 42(1):184-90. PubMed ID: 12515553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of novel effector domains in Rac1 involved in the activation of nicotinamide adenine dinucleotide phosphate (reduced) oxidase.
    Toporik A; Gorzalczany Y; Hirshberg M; Pick E; Lotan O
    Biochemistry; 1998 May; 37(20):7147-56. PubMed ID: 9585526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryptic Rac-binding and p21(Cdc42Hs/Rac)-activated kinase phosphorylation sites of NADPH oxidase component p67(phox).
    Ahmed S; Prigmore E; Govind S; Veryard C; Kozma R; Wientjes FB; Segal AW; Lim L
    J Biol Chem; 1998 Jun; 273(25):15693-701. PubMed ID: 9624165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the role for Rho family GTPases in NADPH oxidase activation.
    Miyano K; Sumimoto H
    Methods Mol Biol; 2012; 827():195-212. PubMed ID: 22144277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct interaction of actin with p47(phox) of neutrophil NADPH oxidase.
    Tamura M; Kai T; Tsunawaki S; Lambeth JD; Kameda K
    Biochem Biophys Res Commun; 2000 Oct; 276(3):1186-90. PubMed ID: 11027608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arachidonic acid induces direct interaction of the p67(phox)-Rac complex with the phagocyte oxidase Nox2, leading to superoxide production.
    Matono R; Miyano K; Kiyohara T; Sumimoto H
    J Biol Chem; 2014 Sep; 289(36):24874-84. PubMed ID: 25056956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucosylation and ADP ribosylation of rho proteins: effects on nucleotide binding, GTPase activity, and effector coupling.
    Sehr P; Joseph G; Genth H; Just I; Pick E; Aktories K
    Biochemistry; 1998 Apr; 37(15):5296-304. PubMed ID: 9548761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase.
    Koga H; Terasawa H; Nunoi H; Takeshige K; Inagaki F; Sumimoto H
    J Biol Chem; 1999 Aug; 274(35):25051-60. PubMed ID: 10455184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role for the first SH3 domain of p67phox in activation of superoxide-producing NADPH oxidases.
    Maehara Y; Miyano K; Sumimoto H
    Biochem Biophys Res Commun; 2009 Feb; 379(2):589-93. PubMed ID: 19116138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rac binding to p67(phox). Structural basis for interactions of the Rac1 effector region and insert region with components of the respiratory burst oxidase.
    Nisimoto Y; Freeman JL; Motalebi SA; Hirshberg M; Lambeth JD
    J Biol Chem; 1997 Jul; 272(30):18834-41. PubMed ID: 9228059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The domain organization of p67 phox, a protein required for activation of the superoxide-producing NADPH oxidase in phagocytes.
    Yuzawa S; Miyano K; Honbou K; Inagaki F; Sumimoto H
    J Innate Immun; 2009; 1(6):543-55. PubMed ID: 20375610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of arachidonic acid to myeloid-related proteins (S100A8/A9) enhances phagocytic NADPH oxidase activation.
    Bouzidi F; Doussiere J
    Biochem Biophys Res Commun; 2004 Dec; 325(3):1060-5. PubMed ID: 15541396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The insert region of the Rac GTPases is dispensable for activation of superoxide-producing NADPH oxidases.
    Miyano K; Koga H; Minakami R; Sumimoto H
    Biochem J; 2009 Aug; 422(2):373-82. PubMed ID: 19534724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of the superoxide-generating NADPH oxidase by chimeric proteins consisting of segments of the cytosolic component p67(phox) and the small GTPase Rac1.
    Alloul N; Gorzalczany Y; Itan M; Sigal N; Pick E
    Biochemistry; 2001 Dec; 40(48):14557-66. PubMed ID: 11724569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the superoxide-producing enzyme of eosinophils and neutrophils--comparison of the NADPH oxidase components.
    Someya A; Nishijima K; Nunoi H; Irie S; Nagaoka I
    Arch Biochem Biophys; 1997 Sep; 345(2):207-13. PubMed ID: 9308891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liposomes comprising anionic but not neutral phospholipids cause dissociation of Rac(1 or 2) x RhoGDI complexes and support amphiphile-independent NADPH oxidase activation by such complexes.
    Ugolev Y; Molshanski-Mor S; Weinbaum C; Pick E
    J Biol Chem; 2006 Jul; 281(28):19204-19. PubMed ID: 16702219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.