These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9642266)

  • 1. Mutations at nonliganding residues Tyr-85 and Glu-83 in the N-lobe of human serum transferrin. Functional second shell effects.
    He QY; Mason AB; Woodworth RC; Tam BM; MacGillivray RT; Grady JK; Chasteen ND
    J Biol Chem; 1998 Jul; 273(27):17018-24. PubMed ID: 9642266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations at the histidine 249 ligand profoundly alter the spectral and iron-binding properties of human serum transferrin N-lobe.
    He QY; Mason AB; Pakdaman R; Chasteen ND; Dixon BK; Tam BM; Nguyen V; MacGillivray RT; Woodworth RC
    Biochemistry; 2000 Feb; 39(6):1205-10. PubMed ID: 10684597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand variation in the transferrin family: the crystal structure of the H249Q mutant of the human transferrin N-lobe as a model for iron binding in insect transferrins.
    Baker HM; Mason AB; He QY; MacGillivray RT; Baker EN
    Biochemistry; 2001 Oct; 40(39):11670-5. PubMed ID: 11570867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational analysis of C-lobe ligands of human serum transferrin: insights into the mechanism of iron release.
    Mason AB; Halbrooks PJ; James NG; Connolly SA; Larouche JR; Smith VC; MacGillivray RT; Chasteen ND
    Biochemistry; 2005 Jun; 44(22):8013-21. PubMed ID: 15924420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inequivalence of the two tyrosine ligands in the N-lobe of human serum transferrin.
    He QY; Mason AB; Woodworth RC; Tam BM; MacGillivray RT; Grady JK; Chasteen ND
    Biochemistry; 1997 Dec; 36(48):14853-60. PubMed ID: 9398207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual role of Lys206-Lys296 interaction in human transferrin N-lobe: iron-release trigger and anion-binding site.
    He QY; Mason AB; Tam BM; MacGillivray RT; Woodworth RC
    Biochemistry; 1999 Jul; 38(30):9704-11. PubMed ID: 10423249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral and metal-binding properties of three single-point tryptophan mutants of the human transferrin N-lobe.
    He QY; Mason AB; Lyons BA; Tam BM; Nguyen V; MacGillivray RT; Woodworth RC
    Biochem J; 2001 Mar; 354(Pt 2):423-9. PubMed ID: 11171122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation of the iron ligand His 249 to Glu in the N-lobe of human transferrin abolishes the dilysine "trigger" but does not significantly affect iron release.
    MacGillivray RT; Bewley MC; Smith CA; He QY; Mason AB; Woodworth RC; Baker EN
    Biochemistry; 2000 Feb; 39(6):1211-6. PubMed ID: 10684598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional consequences of binding site mutations in transferrin: crystal structures of the Asp63Glu and Arg124Ala mutants of the N-lobe of human transferrin.
    Baker HM; He QY; Briggs SK; Mason AB; Baker EN
    Biochemistry; 2003 Jun; 42(23):7084-9. PubMed ID: 12795604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures and iron release properties of mutants (K206A and K296A) that abolish the dilysine interaction in the N-lobe of human transferrin.
    Nurizzo D; Baker HM; He QY; MacGillivray RT; Mason AB; Woodworth RC; Baker EN
    Biochemistry; 2001 Feb; 40(6):1616-23. PubMed ID: 11327820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of mutations of aspartic acid 63 on the metal-binding properties of the recombinant N-lobe of human serum transferrin.
    He QY; Mason AB; Woodworth RC; Tam BM; Wadsworth T; MacGillivray RT
    Biochemistry; 1997 May; 36(18):5522-8. PubMed ID: 9154935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chloride effect is related to anion binding in determining the rate of iron release from the human transferrin N-lobe.
    He QY; Mason AB; Nguyen V; MacGillivray RT; Woodworth RC
    Biochem J; 2000 Sep; 350 Pt 3(Pt 3):909-15. PubMed ID: 10970808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trp128Tyr mutation in the N-lobe of recombinant human serum transferrin: 1H- and 15N-NMR and metal binding studies.
    Beatty EJ; Cox MC; Frenkiel TA; He QY; Mason AB; Sadler PJ; Tucker A; Woodworth RC
    Protein Eng; 1997 May; 10(5):583-91. PubMed ID: 9215577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional consequences of the substitution of glycine 65 with arginine in the N-lobe of human transferrin.
    Mason AB; Halbrooks PJ; James NG; Byrne SL; Grady JK; Chasteen ND; Bobst CE; Kaltashov IA; Smith VC; MacGillivray RT; Everse SJ
    Biochemistry; 2009 Mar; 48(9):1945-53. PubMed ID: 19219998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [13C]Methionine NMR and metal-binding studies of recombinant human transferrin N-lobe and five methionine mutants: conformational changes and increased sensitivity to chloride.
    He QY; Mason AB; Tam BM; MacGillivray RT; Woodworth RC
    Biochem J; 1999 Dec; 344 Pt 3(Pt 3):881-7. PubMed ID: 10585877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The position of arginine 124 controls the rate of iron release from the N-lobe of human serum transferrin. A structural study.
    Adams TE; Mason AB; He QY; Halbrooks PJ; Briggs SK; Smith VC; MacGillivray RT; Everse SJ
    J Biol Chem; 2003 Feb; 278(8):6027-33. PubMed ID: 12458193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of salt and site-directed mutations on the iron(III)-binding site of human serum transferrin as probed by EPR spectroscopy.
    Grady JK; Mason AB; Woodworth RC; Chasteen ND
    Biochem J; 1995 Jul; 309 ( Pt 2)(Pt 2):403-10. PubMed ID: 7626003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic residues of human serum transferrin affect binding to the transferrin receptor and iron release.
    Steere AN; Miller BF; Roberts SE; Byrne SL; Chasteen ND; Smith VC; MacGillivray RT; Mason AB
    Biochemistry; 2012 Jan; 51(2):686-94. PubMed ID: 22191507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composition of pH-sensitive triad in C-lobe of human serum transferrin. Comparison to sequences of ovotransferrin and lactoferrin provides insight into functional differences in iron release.
    Halbrooks PJ; Giannetti AM; Klein JS; Björkman PJ; Larouche JR; Smith VC; MacGillivray RT; Everse SJ; Mason AB
    Biochemistry; 2005 Nov; 44(47):15451-60. PubMed ID: 16300393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron release from recombinant N-lobe and single point Asp63 mutants of human transferrin by EDTA.
    He QY; Mason AB; Woodworth RC
    Biochem J; 1997 Dec; 328 ( Pt 2)(Pt 2):439-45. PubMed ID: 9371699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.