BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9642672)

  • 1. Dual response of calpain to rat brain postdecapitative ischemia.
    Zalewska T; Zabłocka B; Saido TC; Zajac H; Domańska-Janik K
    Mol Chem Neuropathol; 1998 Apr; 33(3):185-97. PubMed ID: 9642672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The calpain proteolytic system in neonatal hypoxic-ischemia.
    Blomgren K; McRae A; Elmered A; Bona E; Kawashima S; Saido TC; Ono T; Hagberg H
    Ann N Y Acad Sci; 1997 Oct; 825():104-19. PubMed ID: 9369979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Downregulation of calpastatin in rat heart after brief ischemia and reperfusion.
    Sorimachi Y; Harada K; Saido TC; Ono T; Kawashima S; Yoshida K
    J Biochem; 1997 Oct; 122(4):743-8. PubMed ID: 9399577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of calpain in postmortem proteolysis in the rat brain.
    Sorimachi Y; Harada K; Yoshida K
    Forensic Sci Int; 1996 Aug; 81(2-3):165-74. PubMed ID: 8837492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postischemic reperfusion induces alpha-fodrin proteolysis by m-calpain in the synaptosome and nucleus in rat brain.
    Fukuda S; Harada K; Kunimatsu M; Sakabe T; Yoshida K
    J Neurochem; 1998 Jun; 70(6):2526-32. PubMed ID: 9603218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular distribution of calpain and calpastatin immunoreactivity and fodrin proteolysis in rabbit hippocampus after hypoxia and glucocorticoid treatment.
    Ostwald K; Hayashi M; Nakamura M; Kawashima S
    J Neurochem; 1994 Sep; 63(3):1069-76. PubMed ID: 8051548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calpastatin is up-regulated in response to hypoxia and is a suicide substrate to calpain after neonatal cerebral hypoxia-ischemia.
    Blomgren K; Hallin U; Andersson AL; Puka-Sundvall M; Bahr BA; McRae A; Saido TC; Kawashima S; Hagberg H
    J Biol Chem; 1999 May; 274(20):14046-52. PubMed ID: 10318818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Species differences in fodrin proteolysis in the ischemic brain.
    Kitagawa K; Matsumoto M; Saido TC; Ohtsuki T; Kuwabara K; Yagita Y; Mabuchi T; Yanagihara T; Hori M
    J Neurosci Res; 1999 Mar; 55(5):643-9. PubMed ID: 10082086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. beta2-Adrenergic receptor responsiveness of the calpain-calpastatin system and attenuation of neuronal death in rat hippocampus after transient global ischemia.
    Rami A; Volkmann T; Agarwal R; Schoninger S; Nürnberger F; Saido TC; Winckler J
    Neurosci Res; 2003 Dec; 47(4):373-82. PubMed ID: 14630341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myocardial ischemia-reperfusion injury and proteolysis of fodrin, ankyrin, and calpastatin.
    Yoshida K
    Methods Mol Biol; 2000; 144():267-75. PubMed ID: 10818772
    [No Abstract]   [Full Text] [Related]  

  • 11. 3-[2-[4-(3-Chloro-2-methylphenylmethyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydro-chloride 3.5 hydrate (DY-9760e) is neuroprotective in rat microsphere embolism: role of the cross-talk between calpain and caspase-3 through calpastatin.
    Han F; Shirasaki Y; Fukunaga K
    J Pharmacol Exp Ther; 2006 May; 317(2):529-36. PubMed ID: 16467455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroprotective mechanism of taurine due to up-regulating calpastatin and down-regulating calpain and caspase-3 during focal cerebral ischemia.
    Sun M; Xu C
    Cell Mol Neurobiol; 2008 Jun; 28(4):593-611. PubMed ID: 17712625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fodrin degradation and subcellular distribution of calpains after neonatal rat cerebral hypoxic-ischemia.
    Blomgren K; Kawashima S; Saido TC; Karlsson JO; Elmered A; Hagberg H
    Brain Res; 1995 Jul; 684(2):143-9. PubMed ID: 7583215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in brain calpain activity as a result of in vitro ischemia and pH alterations.
    Nilsson E; Ostwald K; Karlsson JO
    Mol Chem Neuropathol; 1991 Apr; 14(2):99-111. PubMed ID: 1910362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The purification and characterization of mu-calpain and calpastatin from ostrich brain.
    Mkwetshana N; Naudé RJ; Muramoto K
    Int J Biochem Cell Biol; 2002 Jun; 34(6):613-24. PubMed ID: 11943592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of the Ca(2+)-dependent proteinases and their inhibitor in normal, fasted, and denervated rat skeletal muscle.
    Kumamoto T; Kleese WC; Cong JY; Goll DE; Pierce PR; Allen RE
    Anat Rec; 1992 Jan; 232(1):60-77. PubMed ID: 1536466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of mu-, m-calpains and calpastatin and capture of mu-calpain activation in endothelial cells.
    Fujitani K; Kambayashi J; Sakon M; Ohmi SI; Kawashima S; Yukawa M; Yano Y; Miyoshi H; Ikeda M; Shinoki N; Monden M
    J Cell Biochem; 1997 Aug; 66(2):197-209. PubMed ID: 9213221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calpain is implicated in rat myocardial injury after ischemia or reperfusion.
    Yoshida K; Sorimachi Y; Fujiwara M; Hironaka K
    Jpn Circ J; 1995 Jan; 59(1):40-8. PubMed ID: 7752444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extra-lysosomal proteolysis and expression of calpains and calpastatin in cultured thyroid cells.
    Karlsson JO; Nilsson M
    Cell Biol Int; 1997 Mar; 21(3):167-74. PubMed ID: 9151993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pH and ionic strength on mu- and m-calpain inhibition by calpastatin.
    Maddock KR; Huff-Lonergan E; Rowe LJ; Lonergan SM
    J Anim Sci; 2005 Jun; 83(6):1370-6. PubMed ID: 15890814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.