These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 9643547)
1. Polypeptide binding of Escherichia coli FtsH (HflB). Akiyama Y; Ehrmann M; Kihara A; Ito K Mol Microbiol; 1998 May; 28(4):803-12. PubMed ID: 9643547 [TBL] [Abstract][Full Text] [Related]
2. Dislocation of membrane proteins in FtsH-mediated proteolysis. Kihara A; Akiyama Y; Ito K EMBO J; 1999 Jun; 18(11):2970-81. PubMed ID: 10357810 [TBL] [Abstract][Full Text] [Related]
3. Second transmembrane segment of FtsH plays a role in its proteolytic activity and homo-oligomerization. Makino S; Makino T; Abe K; Hashimoto J; Tatsuta T; Kitagawa M; Mori H; Ogura T; Fujii T; Fushinobu S; Wakagi T; Matsuzawa H FEBS Lett; 1999 Nov; 460(3):554-8. PubMed ID: 10556534 [TBL] [Abstract][Full Text] [Related]
4. FtsH, a membrane-bound ATPase, forms a complex in the cytoplasmic membrane of Escherichia coli. Akiyama Y; Yoshihisa T; Ito K J Biol Chem; 1995 Oct; 270(40):23485-90. PubMed ID: 7559511 [TBL] [Abstract][Full Text] [Related]
5. Involvement of FtsH in protein assembly into and through the membrane. I. Mutations that reduce retention efficiency of a cytoplasmic reporter. Akiyama Y; Ogura T; Ito K J Biol Chem; 1994 Feb; 269(7):5218-24. PubMed ID: 8106504 [TBL] [Abstract][Full Text] [Related]
6. Roles of homooligomerization and membrane association in ATPase and proteolytic activities of FtsH in vitro. Akiyama Y; Ito K Biochemistry; 2001 Jun; 40(25):7687-93. PubMed ID: 11412122 [TBL] [Abstract][Full Text] [Related]
7. FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins. Akiyama Y; Kihara A; Tokuda H; Ito K J Biol Chem; 1996 Dec; 271(49):31196-201. PubMed ID: 8940120 [TBL] [Abstract][Full Text] [Related]
8. Roles of the periplasmic domain of Escherichia coli FtsH (HflB) in protein interactions and activity modulation. Akiyama Y; Kihara A; Mori H; Ogura T; Ito K J Biol Chem; 1998 Aug; 273(35):22326-33. PubMed ID: 9712851 [TBL] [Abstract][Full Text] [Related]
9. Coupled kinetics of ATP and peptide hydrolysis by Escherichia coli FtsH protease. Bruckner RC; Gunyuzlu PL; Stein RL Biochemistry; 2003 Sep; 42(36):10843-52. PubMed ID: 12962509 [TBL] [Abstract][Full Text] [Related]
10. Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli. Shotland Y; Teff D; Koby S; Kobiler O; Oppenheim AB J Mol Biol; 2000 Jun; 299(4):953-64. PubMed ID: 10843850 [TBL] [Abstract][Full Text] [Related]
11. Context-dependent effects of charged residues in transmembrane segments of MalF-PhoA fusions. Ehrle R; Mikhaleva N; Boyd D; Davidson AL; Ehrmann M Res Microbiol; 2003 Nov; 154(9):654-7. PubMed ID: 14596903 [TBL] [Abstract][Full Text] [Related]
12. A protease complex in the Escherichia coli plasma membrane: HflKC (HflA) forms a complex with FtsH (HflB), regulating its proteolytic activity against SecY. Kihara A; Akiyama Y; Ito K EMBO J; 1996 Nov; 15(22):6122-31. PubMed ID: 8947034 [TBL] [Abstract][Full Text] [Related]
13. Different pathways for protein degradation by the FtsH/HflKC membrane-embedded protease complex: an implication from the interference by a mutant form of a new substrate protein, YccA. Kihara A; Akiyama Y; Ito K J Mol Biol; 1998 May; 279(1):175-88. PubMed ID: 9636708 [TBL] [Abstract][Full Text] [Related]
14. FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit. Kihara A; Akiyama Y; Ito K Proc Natl Acad Sci U S A; 1995 May; 92(10):4532-6. PubMed ID: 7753838 [TBL] [Abstract][Full Text] [Related]
15. Roles of multimerization and membrane association in the proteolytic functions of FtsH (HflB). Akiyama Y; Ito K EMBO J; 2000 Aug; 19(15):3888-95. PubMed ID: 10921871 [TBL] [Abstract][Full Text] [Related]
17. Escherichia coli FtsH (HflB) degrades a membrane-associated TolAI-II-beta-lactamase fusion protein under highly denaturing conditions. Cooper KW; Baneyx F Protein Expr Purif; 2001 Mar; 21(2):323-32. PubMed ID: 11237695 [TBL] [Abstract][Full Text] [Related]
18. Sec-independent translocation of a 100-residue periplasmic N-terminal tail in the E. coli inner membrane protein proW. Whitley P; Zander T; Ehrmann M; Haardt M; Bremer E; von Heijne G EMBO J; 1994 Oct; 13(19):4653-61. PubMed ID: 7925306 [TBL] [Abstract][Full Text] [Related]
19. Maltose transport in Escherichia coli: mutations that uncouple ATP hydrolysis from transport. Panagiotidis CH; Shuman HA Methods Enzymol; 1998; 292():30-9. PubMed ID: 9711544 [No Abstract] [Full Text] [Related]
20. The Tsr chemosensory transducer of Escherichia coli assembles into the cytoplasmic membrane via a SecA-dependent process. Gebert JF; Overhoff B; Manson MD; Boos W J Biol Chem; 1988 Nov; 263(32):16652-60. PubMed ID: 2846545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]