These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 9644041)

  • 61. Changes in renal blood flow in response to sympathomimetics in the rat transplanted and denervated kidney.
    Morita K; Seki T; Nonomura K; Koyanagi T; Yoshioka M; Saito H
    Int J Urol; 1999 Jan; 6(1):24-32. PubMed ID: 10221861
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Modelling the neural control of intrarenal blood flow.
    Navakatikyan MA; Leonard BL; Evans RG; Malpas SC
    Clin Exp Pharmacol Physiol; 2000 Aug; 27(8):650-2. PubMed ID: 10901400
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of CGRP on baroreflex control of heart rate and renal sympathetic nerve activity in rabbits.
    Okamoto H; Hoka S; Kawasaki T; Sato M; Yoshitake J
    Am J Physiol; 1992 Oct; 263(4 Pt 2):R874-9. PubMed ID: 1415800
    [TBL] [Abstract][Full Text] [Related]  

  • 64. alpha-Adrenoceptor subtypes mediating regional kidney blood flow responses to renal nerve stimulation.
    Eppel GA; Lee LL; Evans RG
    Auton Neurosci; 2004 May; 112(1-2):15-24. PubMed ID: 15233926
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Rat renal hemodynamics during venous compression: roles of nerves and prostaglandins.
    Corradi A; Arendshorst WJ
    Am J Physiol; 1985 Jun; 248(6 Pt 2):F810-20. PubMed ID: 4003555
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Differential control of intrarenal blood flow during reflex increases in sympathetic nerve activity.
    Leonard BL; Malpas SC; Denton KM; Madden AC; Evans RG
    Am J Physiol Regul Integr Comp Physiol; 2001 Jan; 280(1):R62-8. PubMed ID: 11124135
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Renal sympathetic and circulatory responses to activation of the exercise pressor reflex in rats.
    Koba S; Yoshida T; Hayashi N
    Exp Physiol; 2006 Jan; 91(1):111-9. PubMed ID: 16210449
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Arterial baroreflex attenuation during and after continuous propofol infusion.
    Kamijo Y; Goto H; Nakazawa K; Benson KT; Arakawa K
    Can J Anaesth; 1992 Nov; 39(9):987-91. PubMed ID: 1451228
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Renal responses to increases in renal sympathetic nerve activity induced by brainstem stimulation in rabbits.
    Malpas SC; Head GA; Anderson WP
    J Auton Nerv Syst; 1996 Oct; 61(1):70-8. PubMed ID: 8912256
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Norepinephrine spillover faithfully reflects renal sympathetic nerve activity in conscious rabbits.
    Noshiro T; Saigusa T; Way D; Dorward PK; McGrath BP
    Am J Physiol; 1991 Jul; 261(1 Pt 2):F44-50. PubMed ID: 1858903
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The effects of renal denervation and meclofenamate on renal blood flow regulation in conscious rabbits.
    Beilin LJ; Bhattacharya J
    J Physiol; 1979 Dec; 297(0):551-8. PubMed ID: 536922
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Functional response to graded increases in renal nerve activity during hypoxia in conscious rabbits.
    Malpas SC; Shweta A; Anderson WP; Head GA
    Am J Physiol; 1996 Dec; 271(6 Pt 2):R1489-99. PubMed ID: 8997344
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Transfer function analysis between arterial pressure and renal sympathetic nerve activity at cardiac pacing frequencies in the rat.
    Oréa V; Kanbar R; Chapuis B; Barrès C; Julien C
    J Appl Physiol (1985); 2007 Mar; 102(3):1034-40. PubMed ID: 17122372
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mechanisms for renal blood flow control early in diabetes as revealed by chronic flow measurement and transfer function analysis.
    Bell TD; DiBona GF; Wang Y; Brands MW
    J Am Soc Nephrol; 2006 Aug; 17(8):2184-92. PubMed ID: 16807404
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves.
    Schiller AM; Pellegrino PR; Zucker IH
    Auton Neurosci; 2017 May; 204():17-24. PubMed ID: 27514571
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Roles of adrenomedullin 2 in regulating the cardiovascular and sympathetic nervous systems in conscious rats.
    Fujisawa Y; Nagai Y; Miyatake A; Miura K; Shokoji T; Nishiyama A; Kimura S; Abe Y
    Am J Physiol Heart Circ Physiol; 2006 Mar; 290(3):H1120-7. PubMed ID: 16227344
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Exercise training normalizes renal blood flow responses to acute hypoxia in experimental heart failure: role of the α1-adrenergic receptor.
    Pügge C; Mediratta J; Marcus NJ; Schultz HD; Schiller AM; Zucker IH
    J Appl Physiol (1985); 2016 Feb; 120(3):334-43. PubMed ID: 26607245
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Baroreceptor denervation prevents sympathoinhibition during angiotensin II-induced hypertension.
    Barrett CJ; Guild SJ; Ramchandra R; Malpas SC
    Hypertension; 2005 Jul; 46(1):168-72. PubMed ID: 15911743
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Interaction between hemorrhagic hypotension and hypoxia in regulation of renal vascular resistance in unanesthetized rabbits.
    Busija DW
    Circ Shock; 1984; 13(4):353-9. PubMed ID: 6478549
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Autoregulation of renal blood flow and blood pressure variability in the conscious rat].
    Pires SL; Barrès C; Sassard J; Julien C
    Arch Mal Coeur Vaiss; 2001 Aug; 94(8):818-21. PubMed ID: 11575210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.