These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 9644203)
1. Functional analysis of upstream activating elements in the promoter of the FBP1 gene from Saccharomyces cerevisiae. de Mesquita JF; Zaragoza O; Gancedo JM Curr Genet; 1998 Jun; 33(6):406-11. PubMed ID: 9644203 [TBL] [Abstract][Full Text] [Related]
2. Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae. Zaragoza O; Vincent O; Gancedo JM Biochem J; 2001 Oct; 359(Pt 1):193-201. PubMed ID: 11563983 [TBL] [Abstract][Full Text] [Related]
3. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Hedges D; Proft M; Entian KD Mol Cell Biol; 1995 Apr; 15(4):1915-22. PubMed ID: 7891685 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of the UAS1 of STA1 by glucose and STA10 and identification of two loci, SNS1 and MSS1, involved in STA10-dependent repression in Saccharomyces cerevisiae. Ahn JH; Park SH; Kang HS Mol Gen Genet; 1995 Mar; 246(5):529-37. PubMed ID: 7700227 [TBL] [Abstract][Full Text] [Related]
5. Analysis of positive elements sensitive to glucose in the promoter of the FBP1 gene from yeast. Vincent O; Gancedo JM J Biol Chem; 1995 May; 270(21):12832-8. PubMed ID: 7759539 [TBL] [Abstract][Full Text] [Related]
6. Regulatory regions in the yeast FBP1 and PCK1 genes. Mercado JJ; Gancedo JM FEBS Lett; 1992 Oct; 311(2):110-4. PubMed ID: 1327878 [TBL] [Abstract][Full Text] [Related]
7. Identification of UAS elements and binding proteins necessary for derepression of Saccharomyces cerevisiae fructose-1,6-bisphosphatase. Niederacher D; Schüller HJ; Grzesitza D; Gütlich H; Hauser HP; Wagner T; Entian KD Curr Genet; 1992 Nov; 22(5):363-70. PubMed ID: 1330335 [TBL] [Abstract][Full Text] [Related]
8. MIG1-dependent and MIG1-independent glucose regulation of MAL gene expression in Saccharomyces cerevisiae. Hu Z; Nehlin JO; Ronne H; Michels CA Curr Genet; 1995 Aug; 28(3):258-66. PubMed ID: 8529272 [TBL] [Abstract][Full Text] [Related]
9. Isolation and identification of genes activating UAS2-dependent ADH2 expression in Saccharomyces cerevisiae. Donoviel MS; Young ET Genetics; 1996 Jul; 143(3):1137-48. PubMed ID: 8807288 [TBL] [Abstract][Full Text] [Related]
10. Cis and trans-acting regulatory elements required for regulation of the CPS1 gene in Saccharomyces cerevisiae. Bordallo J; Suárez-Rendueles P Mol Gen Genet; 1995 Mar; 246(5):580-9. PubMed ID: 7700231 [TBL] [Abstract][Full Text] [Related]
11. Derepression of gene expression mediated by the 5' upstream region of the isocitrate lyase gene of Candida tropicalis is controlled by two distinct regulatory pathways in Saccharomyces cerevisiae. Umemura K; Atomi H; Kanai T; Takeshita S; Kanayama N; Ueda M; Tanaka A Eur J Biochem; 1997 Feb; 243(3):748-52. PubMed ID: 9057841 [TBL] [Abstract][Full Text] [Related]
12. A carbon-source-responsive element is required for regulation of the hypoxic ADP/ATP carrier (AAC3) isoform in Saccharomyces cerevisiae. Sokolíková B; Sabová L; Kissová I; Kolarov J Biochem J; 2000 Dec; 352 Pt 3(Pt 3):893-8. PubMed ID: 11104700 [TBL] [Abstract][Full Text] [Related]
13. Reciprocal nuclear shuttling of two antagonizing Zn finger proteins modulates Tup family corepressor function to repress chromatin remodeling. Hirota K; Hoffman CS; Ohta K Eukaryot Cell; 2006 Dec; 5(12):1980-9. PubMed ID: 17028240 [TBL] [Abstract][Full Text] [Related]
14. The repressor Rgt1 and the cAMP-dependent protein kinases control the expression of the SUC2 gene in Saccharomyces cerevisiae. Gancedo JM; Flores CL; Gancedo C Biochim Biophys Acta; 2015 Jul; 1850(7):1362-7. PubMed ID: 25810078 [TBL] [Abstract][Full Text] [Related]
15. Regions in the promoter of the yeast FBP1 gene implicated in catabolite repression may bind the product of the regulatory gene MIG1. Mercado JJ; Vincent O; Gancedo JM FEBS Lett; 1991 Oct; 291(1):97-100. PubMed ID: 1657641 [TBL] [Abstract][Full Text] [Related]
16. Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Johnston M; Flick JS; Pexton T Mol Cell Biol; 1994 Jun; 14(6):3834-41. PubMed ID: 8196626 [TBL] [Abstract][Full Text] [Related]
17. Characteristics of Saccharomyces cerevisiae gal1 Delta and gal1 Delta hxk2 Delta mutants expressing recombinant proteins from the GAL promoter. Kang HA; Kang WK; Go SM; Rezaee A; Krishna SH; Rhee SK; Kim JY Biotechnol Bioeng; 2005 Mar; 89(6):619-29. PubMed ID: 15696522 [TBL] [Abstract][Full Text] [Related]
18. Expression of high-affinity glucose transport protein Hxt2p of Saccharomyces cerevisiae is both repressed and induced by glucose and appears to be regulated posttranslationally. Wendell DL; Bisson LF J Bacteriol; 1994 Jun; 176(12):3730-7. PubMed ID: 8206851 [TBL] [Abstract][Full Text] [Related]
19. Functional characterization of transcriptional regulatory elements in the upstream region of the yeast GLK1 gene. Herrero P; Flores L; de la Cera T; Moreno F Biochem J; 1999 Oct; 343 Pt 2(Pt 2):319-25. PubMed ID: 10510295 [TBL] [Abstract][Full Text] [Related]
20. Elements from the cAMP signaling pathway are involved in the control of expression of the yeast gluconeogenic gene FBP1. Zaragoza O; Gancedo JM FEBS Lett; 2001 Oct; 506(3):262-6. PubMed ID: 11602258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]