These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 9644256)
1. Substrate specificities and kinetic properties of proteinase A from the yeast Saccharomyces cerevisiae and the development of a novel substrate. Kondo H; Shibano Y; Amachi T; Cronin N; Oda K; Dunn BM J Biochem; 1998 Jul; 124(1):141-7. PubMed ID: 9644256 [TBL] [Abstract][Full Text] [Related]
2. Substrate specificities of pepstatin-insensitive carboxyl proteinases from gram-negative bacteria. Ito M; Dunn BM; Oda K J Biochem; 1996 Oct; 120(4):845-50. PubMed ID: 8947851 [TBL] [Abstract][Full Text] [Related]
3. Subsite preferences of pepstatin-insensitive carboxyl proteinases from bacteria. Narutaki S; Dunn BM; Oda K J Biochem; 1999 Jan; 125(1):75-81. PubMed ID: 9880800 [TBL] [Abstract][Full Text] [Related]
4. Extracellular aspartic proteinases from Candida albicans, Candida tropicalis, and Candida parapsilosis yeasts differ substantially in their specificities. Fusek M; Smith EA; Monod M; Dunn BM; Foundling SI Biochemistry; 1994 Aug; 33(32):9791-9. PubMed ID: 8068659 [TBL] [Abstract][Full Text] [Related]
5. Substrate specificity and kinetic properties of pepstatin-insensitive carboxyl proteinase from Pseudomonas sp. No. 101. Oda K; Nakatani H; Dunn BM Biochim Biophys Acta; 1992 Apr; 1120(2):208-14. PubMed ID: 1562589 [TBL] [Abstract][Full Text] [Related]
6. Exploring the binding preferences/specificity in the active site of human cathepsin E. Rao-Naik C; Guruprasad K; Batley B; Rapundalo S; Hill J; Blundell T; Kay J; Dunn BM Proteins; 1995 Jun; 22(2):168-81. PubMed ID: 7567964 [TBL] [Abstract][Full Text] [Related]
7. Characterization of new fluorogenic substrates for the rapid and sensitive assay of cathepsin E and cathepsin D. Yasuda Y; Kageyama T; Akamine A; Shibata M; Kominami E; Uchiyama Y; Yamamoto K J Biochem; 1999 Jun; 125(6):1137-43. PubMed ID: 10348917 [TBL] [Abstract][Full Text] [Related]
8. Substrate specificity of pepstatin-insensitive carboxyl proteinase from Bacillus coagulans J-4. Shibata M; Dunn BM; Oda K J Biochem; 1998 Sep; 124(3):642-7. PubMed ID: 9722678 [TBL] [Abstract][Full Text] [Related]
9. Secondary substrate binding in aspartic proteinases: contributions of subsites S3 and S'2 to kcat. Balbaa M; Cunningham A; Hofmann T Arch Biochem Biophys; 1993 Nov; 306(2):297-303. PubMed ID: 8215428 [TBL] [Abstract][Full Text] [Related]
10. Kinetic and modeling studies of S3-S3' subsites of HIV proteinases. Tözsér J; Weber IT; Gustchina A; Bláha I; Copeland TD; Louis JM; Oroszlan S Biochemistry; 1992 May; 31(20):4793-800. PubMed ID: 1591240 [TBL] [Abstract][Full Text] [Related]
11. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling. Scarborough PE; Guruprasad K; Topham C; Richo GR; Conner GE; Blundell TL; Dunn BM Protein Sci; 1993 Feb; 2(2):264-76. PubMed ID: 8443603 [TBL] [Abstract][Full Text] [Related]
12. The pH dependence of the hydrolysis of chromogenic substrates of the type, Lys-Pro-Xaa-Yaa-Phe-(NO2)Phe-Arg-Leu, by selected aspartic proteinases: evidence for specific interactions in subsites S3 and S2. Dunn BM; Valler MJ; Rolph CE; Foundling SI; Jimenez M; Kay J Biochim Biophys Acta; 1987 Jun; 913(2):122-30. PubMed ID: 3109484 [TBL] [Abstract][Full Text] [Related]
13. Subsite specificity of the proteinase from myeloblastosis associated virus. Konvalinka J; Blaha I; Skrabana R; Sedlacek J; Pichova I; Kapralek F; Kostka V; Strop P FEBS Lett; 1991 Apr; 282(1):73-6. PubMed ID: 2026269 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the P2' and P3' specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis. Le Bonniec BF; Myles T; Johnson T; Knight CG; Tapparelli C; Stone SR Biochemistry; 1996 Jun; 35(22):7114-22. PubMed ID: 8679538 [TBL] [Abstract][Full Text] [Related]
15. Comparisons of the three-dimensional structures, specificities and glycosylation of renins, yeast proteinase A and cathepsin D. Aguilar CF; Dhanaraj V; Guruprasad K; Dealwis C; Badasso M; Cooper JB; Wood SP; Blundell TL Adv Exp Med Biol; 1995; 362():155-66. PubMed ID: 8540315 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of porcine pepsin by two substrate analogues containing statine. The effect of histidine at the P2 subsite on the inhibition of aspartic proteinases. Maibaum J; Rich DH J Med Chem; 1988 Mar; 31(3):625-9. PubMed ID: 3126296 [TBL] [Abstract][Full Text] [Related]
17. [p-Nitroanilides of amino acids and peptides and fluorescence peptide with inner fluorescence quenching as substrates for cathepsins H, B, D and high molecular weight aspartic peptidase in the brain]. Azarian AV; Agatian GL; Galoian AA Biokhimiia; 1987 Dec; 52(12):2033-7. PubMed ID: 3328984 [TBL] [Abstract][Full Text] [Related]
18. Substrate specificity of porcine renin: P1', P1, and P3 residues of renin substrates are crucial for activity. Wang W; Liang TC Biochemistry; 1994 Dec; 33(48):14636-41. PubMed ID: 7981226 [TBL] [Abstract][Full Text] [Related]
19. Characterization of kininogenase activity of an acidic proteinase isolated from human kidney. Gomes RA; Juliano L; Chagas JR; Hial V Can J Physiol Pharmacol; 1997 Jun; 75(6):757-61. PubMed ID: 9276160 [TBL] [Abstract][Full Text] [Related]
20. [Determination of activity of aspartic proteinases by cleavage of new chromogenic substrates]. Litvinova OV; Balandina GN; Stepanov VM Bioorg Khim; 1998 Mar; 24(3):175-8. PubMed ID: 9612558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]