These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 9644894)
1. Biological cells with gap junctions in low-frequency electric fields. Fear EC; Stuchly MA IEEE Trans Biomed Eng; 1998 Jul; 45(7):856-66. PubMed ID: 9644894 [TBL] [Abstract][Full Text] [Related]
2. Modeling assemblies of biological cells exposed to electric fields. Fear EC; Stuchly MA IEEE Trans Biomed Eng; 1998 Oct; 45(10):1259-71. PubMed ID: 9775540 [TBL] [Abstract][Full Text] [Related]
3. Electric fields in bone marrow substructures at power-line frequencies. Chiu RS; Stuchly MA IEEE Trans Biomed Eng; 2005 Jun; 52(6):1103-9. PubMed ID: 15977739 [TBL] [Abstract][Full Text] [Related]
4. Boundary-element calculations for amplification of effects of low-frequency electric fields in a doublet-shaped biological cell. Sekine K; Takeda T; Nagaomo K; Matsushima E Bioelectrochemistry; 2010 Feb; 77(2):106-13. PubMed ID: 19683969 [TBL] [Abstract][Full Text] [Related]
5. Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system. Pavlin M; Pavselj N; Miklavcic D IEEE Trans Biomed Eng; 2002 Jun; 49(6):605-12. PubMed ID: 12046706 [TBL] [Abstract][Full Text] [Related]
6. A novel equivalent circuit model for gap-connected cells. Fear EC; Stuchly MA Phys Med Biol; 1998 Jun; 43(6):1439-48. PubMed ID: 9651016 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation. Yamaguchi DT; Huang J; Ma D; Wang PK J Cell Physiol; 2002 Feb; 190(2):180-8. PubMed ID: 11807822 [TBL] [Abstract][Full Text] [Related]
8. The effect of morphological interdigitation on field coupling between smooth muscle cells. Vigmond EJ; Bardakjian BL IEEE Trans Biomed Eng; 1995 Feb; 42(2):162-71. PubMed ID: 7868144 [TBL] [Abstract][Full Text] [Related]
9. Cell culture dosimetry for low-frequency magnetic fields. Hart FX Bioelectromagnetics; 1996; 17(1):48-57. PubMed ID: 8742756 [TBL] [Abstract][Full Text] [Related]
10. Extracellular currents alter gap junction intercellular communication in synovial fibroblasts. Marino AA; Kolomytkin OV; Frilot C Bioelectromagnetics; 2003 Apr; 24(3):199-205. PubMed ID: 12669303 [TBL] [Abstract][Full Text] [Related]
11. Effects of gap junction conductance on dynamics of sinoatrial node cells: two-cell and large-scale network models. Cai D; Winslow RL; Noble D IEEE Trans Biomed Eng; 1994 Mar; 41(3):217-31. PubMed ID: 8045574 [TBL] [Abstract][Full Text] [Related]
12. Numerical study of the electrical conductivity and polarization in a suspension of spherical cells. Ramos A; Suzuki DO; Marques JL Bioelectrochemistry; 2006 May; 68(2):213-7. PubMed ID: 16256446 [TBL] [Abstract][Full Text] [Related]
13. Frequency- and time-domain FEM models of EMG: capacitive effects and aspects of dispersion. Stoykov NS; Lowery MM; Taflove A; Kuiken TA IEEE Trans Biomed Eng; 2002 Aug; 49(8):763-72. PubMed ID: 12148814 [TBL] [Abstract][Full Text] [Related]
14. Thermal noise limit on the sensitivity of cellular membranes to power frequency electric and magnetic fields. Kaune WT Bioelectromagnetics; 2002 Dec; 23(8):622-8. PubMed ID: 12395418 [TBL] [Abstract][Full Text] [Related]
15. Induced electric currents in models of man and rodents from 60 Hz magnetic fields. Xi W; Stuchly MA; Gandhi OP IEEE Trans Biomed Eng; 1994 Nov; 41(11):1018-23. PubMed ID: 8001990 [TBL] [Abstract][Full Text] [Related]
16. Theoretical examination of aggregation effect on the dielectric characteristics of spherical cellular suspension. Ron A; Fishelson N; Croitoriu N; Benayahu D; Shacham-Diamand Y Biophys Chem; 2009 Mar; 140(1-3):39-50. PubMed ID: 19103470 [TBL] [Abstract][Full Text] [Related]
17. Homogenization of an electrophysiological model for a strand of cardiac myocytes with gap-junctional and electric-field coupling. Hand PE; Peskin CS Bull Math Biol; 2010 Aug; 72(6):1408-24. PubMed ID: 20049544 [TBL] [Abstract][Full Text] [Related]
18. Second-order model of membrane electric field induced by alternating external electric fields. Kotnik T; Miklavcic D IEEE Trans Biomed Eng; 2000 Aug; 47(8):1074-81. PubMed ID: 10943056 [TBL] [Abstract][Full Text] [Related]
19. Investigating membrane breakdown of neuronal cells exposed to nonuniform electric fields by finite-element modeling and experiments. Heida T; Wagenaar JB; Rutten WL; Marani E IEEE Trans Biomed Eng; 2002 Oct; 49(10):1195-203. PubMed ID: 12374345 [TBL] [Abstract][Full Text] [Related]
20. Comparison of electric fields induced in humans and rodents by 60-Hz contact currents. Dawson TW; Caputa K; Stuchly MA; Kavet R IEEE Trans Biomed Eng; 2003 Jun; 50(6):744-53. PubMed ID: 12814241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]