These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 9645536)

  • 1. Validated computation of physiologic flow in a realistic coronary artery branch.
    Perktold K; Hofer M; Rappitsch G; Loew M; Kuban BD; Friedman MH
    J Biomech; 1998 Mar; 31(3):217-28. PubMed ID: 9645536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsatile flow in the human left coronary artery bifurcation: average conditions.
    He X; Ku DN
    J Biomech Eng; 1996 Feb; 118(1):74-82. PubMed ID: 8833077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of curvature dynamics on pulsatile coronary artery flow in a realistic bifurcation model.
    Prosi M; Perktold K; Ding Z; Friedman MH
    J Biomech; 2004 Nov; 37(11):1767-75. PubMed ID: 15388320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between wall shear and intimal thickness at a coronary artery branch.
    Friedman MH; Bargeron CB; Deters OJ; Hutchins GM; Mark FF
    Atherosclerosis; 1987 Nov; 68(1-2):27-33. PubMed ID: 3689481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors influencing blood flow patterns in the human right coronary artery.
    Myers JG; Moore JA; Ojha M; Johnston KW; Ethier CR
    Ann Biomed Eng; 2001 Feb; 29(2):109-20. PubMed ID: 11284665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation.
    Zhao SZ; Xu XY; Hughes AD; Thom SA; Stanton AV; Ariff B; Long Q
    J Biomech; 2000 Aug; 33(8):975-84. PubMed ID: 10828328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wall shear stress oscillation and its gradient in the normal left coronary artery tree bifurcations.
    Soulis J; Fytanidis D; Seralidou K; Giannoglou G
    Hippokratia; 2014 Jan; 18(1):12-6. PubMed ID: 25125945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow Characteristics in an Anatomically Realistic Compliant Carotid Artery Bifurcation Model.
    Karner G; Perktold K; Hofer M; Liepsch D
    Comput Methods Biomech Biomed Engin; 1999; 2(3):171-185. PubMed ID: 11264826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of abdominal aortic curvature and resting versus exercise conditions on velocity fields in the normal abdominal aortic bifurcation.
    Pedersen EM; Sung HW; Yoganathan AP
    J Biomech Eng; 1994 Aug; 116(3):347-54. PubMed ID: 7799638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Velocity and wall shear stress patterns in the human right coronary artery.
    Kirpalani A; Park H; Butany J; Johnston KW; Ojha M
    J Biomech Eng; 1999 Aug; 121(4):370-5. PubMed ID: 10464690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Healthy and diseased coronary bifurcation geometries influence near-wall and intravascular flow: A computational exploration of the hemodynamic risk.
    Chiastra C; Gallo D; Tasso P; Iannaccone F; Migliavacca F; Wentzel JJ; Morbiducci U
    J Biomech; 2017 Jun; 58():79-88. PubMed ID: 28457603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of flow partition on wall shear in a cast of a human coronary artery.
    Bargeron CB; Deters OJ; Mark FF; Friedman MH
    Cardiovasc Res; 1988 May; 22(5):340-4. PubMed ID: 2973373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects.
    Milner JS; Moore JA; Rutt BK; Steinman DA
    J Vasc Surg; 1998 Jul; 28(1):143-56. PubMed ID: 9685141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress.
    Ku DN; Giddens DP; Zarins CK; Glagov S
    Arteriosclerosis; 1985; 5(3):293-302. PubMed ID: 3994585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial and phasic oscillation of non-Newtonian wall shear stress in human left coronary artery bifurcation: an insight to atherogenesis.
    Soulis JV; Giannoglou GD; Chatzizisis YS; Farmakis TM; Giannakoulas GA; Parcharidis GE; Louridas GE
    Coron Artery Dis; 2006 May; 17(4):351-8. PubMed ID: 16707958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2006; 39(5):818-32. PubMed ID: 16488221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model.
    Perktold K; Rappitsch G
    J Biomech; 1995 Jul; 28(7):845-56. PubMed ID: 7657682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computation of hemodynamics in the left coronary artery with variable angulations.
    Chaichana T; Sun Z; Jewkes J
    J Biomech; 2011 Jul; 44(10):1869-78. PubMed ID: 21550611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirements for mesh resolution in 3D computational hemodynamics.
    Prakash S; Ethier CR
    J Biomech Eng; 2001 Apr; 123(2):134-44. PubMed ID: 11340874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.