These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 9645536)
41. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow. Madhavan S; Kemmerling EMC Biomed Eng Online; 2018 May; 17(1):66. PubMed ID: 29843730 [TBL] [Abstract][Full Text] [Related]
42. Comparison of steady and pulsatile flow in a double branching arterial model. Lutz RJ; Hsu L; Menawat A; Zrubek J; Edwards K J Biomech; 1983; 16(9):753-66. PubMed ID: 6643546 [TBL] [Abstract][Full Text] [Related]
43. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids. Frolov SV; Sindeev SV; Liepsch D; Balasso A Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725 [TBL] [Abstract][Full Text] [Related]
44. Measurements of velocity and wall shear stress inside a PTFE vascular graft model under steady flow conditions. Loth F; Jones SA; Giddens DP; Bassiouny HS; Glagov S; Zarins CK J Biomech Eng; 1997 May; 119(2):187-94. PubMed ID: 9168395 [TBL] [Abstract][Full Text] [Related]
45. Combined effects of pulsatile flow and dynamic curvature on wall shear stress in a coronary artery bifurcation model. Pivkin IV; Richardson PD; Laidlaw DH; Karniadakis GE J Biomech; 2005 Jun; 38(6):1283-90. PubMed ID: 15863113 [TBL] [Abstract][Full Text] [Related]
46. The effect of compliance on wall shear in casts of a human aortic bifurcation. Duncan DD; Bargeron CB; Borchardt SE; Deters OJ; Gearhart SA; Mark FF; Friedman MH J Biomech Eng; 1990 May; 112(2):183-8. PubMed ID: 2345449 [TBL] [Abstract][Full Text] [Related]
47. Nonquasi-steady character of pulsatile flow in human coronary arteries. Mark FF; Bargeron CB; Deters OJ; Friedman MH J Biomech Eng; 1985 Feb; 107(1):24-8. PubMed ID: 3157021 [TBL] [Abstract][Full Text] [Related]
48. Blood flow patterns in an anatomically realistic coronary vessel: influence of three different reconstruction methods. Berthier B; Bouzerar R; Legallais C J Biomech; 2002 Oct; 35(10):1347-56. PubMed ID: 12231280 [TBL] [Abstract][Full Text] [Related]
49. On using experimentally estimated wall shear stresses to validate numerically predicted results. Walsh M; McGloughlin T; Liepsch DW; O'Brien T; Morris L; Ansari AR Proc Inst Mech Eng H; 2003; 217(2):77-90. PubMed ID: 12666774 [TBL] [Abstract][Full Text] [Related]
50. Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro. Nygaard H; Giersiepen M; Hasenkam JM; Reul H; Paulsen PK; Rovsing PE; Westphal D J Biomech; 1992 Apr; 25(4):429-40. PubMed ID: 1583021 [TBL] [Abstract][Full Text] [Related]
51. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases. Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336 [TBL] [Abstract][Full Text] [Related]
52. A numerical study of flow in curved tubes simulating coronary arteries. Chang LJ; Tarbell JM J Biomech; 1988; 21(11):927-37. PubMed ID: 3253279 [TBL] [Abstract][Full Text] [Related]
53. Dynamic curvature strongly affects wall shear rates in a coronary artery bifurcation model. Weydahl ES; Moore JE J Biomech; 2001 Sep; 34(9):1189-96. PubMed ID: 11506789 [TBL] [Abstract][Full Text] [Related]
54. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch. Chen J; Lu XY J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598 [TBL] [Abstract][Full Text] [Related]
55. Coronary stents cause high velocity fluctuation with a flow acceleration and flow reduction in jailed branches: an in vitro study using laser-Doppler anemometry. Dörler J; Frick M; Hilber M; Breitfuss H; Abdel-Hadi MN; Pachinger O; Liepsch D; Schwarzacher SP Biorheology; 2012; 49(5-6):329-40. PubMed ID: 23380899 [TBL] [Abstract][Full Text] [Related]
56. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow. Freshwater IJ; Morsi YS; Lai T Proc Inst Mech Eng H; 2006 Oct; 220(7):743-57. PubMed ID: 17117764 [TBL] [Abstract][Full Text] [Related]
57. Comparison of left anterior descending coronary artery hemodynamics before and after angioplasty. Ramaswamy SD; Vigmostad SC; Wahle A; Lai YG; Olszewski ME; Braddy KC; Brennan TM; Rossen JD; Sonka M; Chandran KB J Biomech Eng; 2006 Feb; 128(1):40-8. PubMed ID: 16532616 [TBL] [Abstract][Full Text] [Related]
58. A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses. Moore JA; Steinman DA; Prakash S; Johnston KW; Ethier CR J Biomech Eng; 1999 Jun; 121(3):265-72. PubMed ID: 10396691 [TBL] [Abstract][Full Text] [Related]
59. Development of wall surface tangent DPIV measurement techniques for arterial branch models. Karn EL; Beale S; Duitiño AM; Wei T; Graham AM; Nackman GB J Biomech Eng; 1998 Dec; 120(6):784-7. PubMed ID: 10412464 [TBL] [Abstract][Full Text] [Related]
60. Patient specific 3-d modeling of blood flow in a multi-stenosed left coronary artery. Kamangar S; Badruddin IA; Ameer Ahamad N; Soudagar MEM; Govindaraju K; Nik-Ghazali N; Salman Ahmed NJ; Yunus Khan TM Biomed Mater Eng; 2017; 28(3):257-266. PubMed ID: 28527189 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]